
IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol.6, No.2, Mar-April 2016

 127

Software Process Models Outline

Manan D Shah Charusmita Dhiman
 Assistaant Professor Assistant Professor
 Information Technology Department Computer Engineering Department

 Charusat University MBICT, New V.V.Nagar
Mananshah0003@gmail.com Charusmita.dhiman@gmail.com

Abstract—Software engineering works on different models.
Models plays most important role while developing any software.
Models may be considered as a skeleton of the software. The
development models are the various processes or methodologies
that are being selected for the development of the project
depending on the project’s aims and goals. There are many
development life cycle models that have been developed in order
to achieve different required objectives. The models specify the
various stages of the process and the order in which they are
carried out. Further detail description of each model is carried
out in this paper by explaining its importance and pros and cons
of the models. There are models like waterfall model,
Incremental models and Evolutionary models.

Keywords: - Software Models, Waterfall Model, Incremental
Models, Evolutionary models

A. Introduction

A system too large for one person to build is usually also too
large to build without an overall plan that coordinates the
people working on it, the tasks that need to be done, and the
artifacts that are produced. Researchers and practitioners have
identified a number of software development formation
Models for this coordination. Here are some of the main ones.

These formation Models are alternatives, but not exclusive
ones: most describe different aspects of a formation, and it is
common for a development group to be following two or more
simultaneously. For example,

• The sashimi formation is a way of organizing a
waterfall with feedback.

• Boehm's spiral Model example uses prototyping as
the Model for each cycle, and portions of a waterfall Model
for the delivered system stage of the prototyping Model.

• An incremental formation often uses a sashimi
formation for its Produce a build stage.

Following is the classification of different Software
Formation Model.

1. Waterfall Model
2. Incremental Formation Model
 2.1 Incremental Model
 2.2 RAD Model
3. Evolutionary Formation Model

3.1 Prototyping
3.2 Spiral Model
3.3 Concurrent Model

1. Waterfall Model

The Waterfall Model was first Process Model to be
introduced. It is also referred to as a linear-sequential life
cycle model. It is very simple to understand and use. In a
waterfall model, each phase must be completed fully before
the next phase can begin. This type of model is basically used
for the for the project which is small and there are no
uncertain requirements. At the end of each phase, a review
takes place to determine if the project is on the right path and
whether or not to continue or discard the project. In this model
the testing starts only after the development is complete. In
waterfall model phases do not overlap [7].?

Figure 1. Waterfall-model

1.1 Fringe benefit of waterfall model:

• It is simple and easy to understand and use.

• It is easy to manage due to the rigidity of the model –
each phase has specific deliverables and a review
process.

• In this model phases are processed and completed
one at a time. Phases do not overlap.

• Waterfall model works well for smaller projects
where requirements are very well understood.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol.6, No.2, Mar-April 2016

 128

 1.2 Shortfalls of waterfall model:

• Once an application is in the testing stage, it is very
difficult to go back and change something that was
not well-thought out in the concept stage.

• No working software is produced until late during the
life cycle.

• High amounts of risk and uncertainty.

• Not a good model for complex and object-oriented
projects.

• Poor model for long and ongoing projects.

• Not suitable for the projects where requirements are
at a moderate to high risk of changing.

1.3 When to use the waterfall model:

• This model is used only when the requirements are
very well known, clear and fixed.

• Product definition is stable.

• Technology is understood.

• There are no ambiguous requirements

• Ample resources with required expertise are available
freely

• The project is short.

2. Incremental Formation Model

2.1 Incremental Model:-

The model is a method of software development where the
model is designed, implemented and tested incrementally (a
little more is added each time) until the product is finished. It
involves both development and maintenance. The product is
defined as finished when it satisfies all of its requirements.
This model combines the elements of the waterfall model with
the iterative philosophy of prototyping [10].

The product is decomposed into a number of components,
each of which are designed and built separately (termed as
builds). Each component is delivered to the client when it is
complete. This allows partial utilization of product and avoids
a long development time. It also creates a large initial capital
outlay with the subsequent long wait avoided. This model of
development also helps ease the traumatic effect of
introducing completely new system all at once.

Figure 2 Incremental Model[Adapted From Google Images]

2.1.1 Fringe benefit of Incremental Model

• Generates working software quickly and early during
the software life cycle.

• More flexible – less costly to change scope and
requirements.

• Easier to test and debug during a smaller iteration.

• Easier to manage risk because risky pieces are
identified and handled during its iteration.

• Each iteration is an easily managed milestone.

2.1.2 Shortfalls of Incremental Model

• Each phase of an iteration is rigid and do not overlap
each other.

• Problems may arise pertaining to system architecture
because not all requirements are gathered up front for
the entire software life cycle.

2.1.3 When to use Incremental Model

• Such models are used where requirements are clear
and can implement by phase wise. From the figure
it’s clear that the requirements ® is divided into R1,
R2 to Rn and delivered accordingly.

• Mostly such model is used in web applications and
product based companies.

2.2 RAD Model

RAD model is Rapid Application Development model. It is a
type of incremental model. In RAD model the components or
functions are developed in parallel as if they were mini
projects. The developments are time boxed, delivered and then
assembled into a working prototype. This can quickly give the
customer something to see and use and to provide feedback
regarding the delivery and their requirements.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol.6, No.2, Mar-April 2016

 129

Figure 3. RAD Model[Adapted From Google Images]

Business modeling: The information flow is identified
between various business functions.

Data modeling: Information gathered from business modeling
is used to define data objects that are needed for the business.

Process modeling: Data objects defined in data modeling are
converted to achieve the business information flow to achieve
some specific business objective. Description are identified
and created for CRUD of data objects.

Application generation: Automated tools are used to convert
process models into code and the actual system.

Testing and turnover: Test new components and all the
interfaces.

2.2.1 Fringe benefit of the RAD model:

• Reduced development time.

• Increases reusability of components

• Quick initial reviews occur

• Encourages customer feedback

• Integration from very beginning solves a lot of
integration issues.

2.2.2 Shortfalls of RAD model:

• Depends on strong team and individual performances
for identifying business requirements.

• Only system that can be modularized can be built
using RAD

• Requires highly skilled developers/designers.

• High dependency on modeling skills

• Inapplicable to cheaper projects as cost of modeling
and automated code generation is very high.

 2.2.3 When to use RAD model:

• RAD should be used when there is a need to create a
system that can be modularized in 2-3 months of
time.

• It should be used if there’s high availability of
designers for modeling and the budget is high enough
to afford their cost along with the cost of automated
code generating tools.

• RAD SDLC model should be chosen only if
resources with high business knowledge are available
and there is a need to produce the system in a short
span of time (2-3 months).

3. Evolutionary Software Formation Model

This approach is based on the idea of rapidly developing an
initial software implementation from very abstract
specifications and modifying this according to your appraisal.
Each program version inherits the best features from earlier
versions. Each version is refined based upon feedback from
yourself to produce a system which satisfies your needs. At
this point the system may be delivered or it may be re-
implemented using a more structured approach to enhance
robustness and maintainability. Specification, development
and validation activities are concurrent with strong feedback
between each. Evolutionary Software Formation Model of
following types of Models

3.1 Prototyping Model

The basic idea here is that instead of freezing the requirements
before a design or coding can proceed, a throwaway prototype
is built to understand the requirements. This prototype is
developed based on the currently known requirements. By
using this prototype, the client can get an “actual feel” of the
system, since the interactions with prototype can enable the
client to better understand the requirements of the desired
system. Prototyping is an attractive idea for complicated and
large systems for which there is no manual formation or
existing system to help determining the requirements. The
prototypes are usually not complete systems and many of the

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol.6, No.2, Mar-April 2016

 130

details are not built in the prototype. The goal is to provide a
system with overall functionality [3].

Figure 4. Prototype Model [Adapted From Google Images]

3.1.1 Fringe Benefit of Prototype Model:

• Users are actively involved in the development

• Since in this methodology a working Model of the
system is provided, the users get a better
understanding of the system being developed.

• Errors can be detected much earlier.

• Quicker user feedback is available leading to better
solutions.

• Missing functionality can be identified easily

• Confusing or difficult functions can be identified
Requirements validation, Quick implementation of
incomplete application.

3.1.2 Shortfalls of Prototype Model:

• Leads to implementing and then repairing way of
building systems.

• Practically, this methodology may increase the
complexity of the system as scope of the system may
expand beyond original plans.

• Incomplete application may cause application not to
be used as the full system was designed

• Incomplete or inadequate problem analysis.

3.1.3 When to use Prototype Model:

• Prototype Model should be used when the desired
system needs to have a lot of interaction with the end
users.

• Typically, online systems, web interfaces have a very
high amount of interaction with end users, are best
suited for Prototype Model. It might take a while for

a system to be built that allows ease of use and needs
minimal training for the end user.

• Prototyping ensures that the end users constantly
work with the system and provide a feedback which
is incorporated in the prototype to result in a useable
system. They are excellent for designing good human
computer interface systems.

3.2 The Spiral Model

The Spiral Model is an evolutionary Software Formation
Model that couples the iterative nature of prototyping with the
controlled and systematic aspects of the Linear Sequential
Model. Using the Spiral Model the software is developed in a
series of incremental releases. Unlike the Iteration Model
where in the first product is a core product, in the Spiral
Model the early iterations could result in a paper Model or a
prototype. However, during later iterations more complex
functionalities could be added [2].

Figure 5. Spiral Model [Adapted From Google Images]

A Spiral Model, combines the iterative nature of prototyping
with the controlled and systematic aspects of the Waterfall
Model, therein providing the potential for rapid development
of incremental versions of the software. A Spiral Model is
divided into a number of framework activities, also called task
regions. These task regions could vary from 3-6 in number and
they are:

• Customer Communication - tasks required to
establish effective communication between the
developer and customer.

• Planning - tasks required to define resources,
timelines and other project related information /items.

• Risk Analysis - tasks required to assess the technical
and management risks.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol.6, No.2, Mar-April 2016

 131

• Engineering - tasks required to build one or more
representation of the application.

• Construction & Release - tasks required to construct,
test and support (eg. Documentation and training)

• Customer evaluation - tasks required to obtain
periodic customer feedback so that there are no last
minute surprises.

3.2.1 Fringe benefit of the Spiral Model

• Realistic approach to the development because the
software evolves as the formation progresses. In
addition, the developer and the client better
understand and react to risks at each evolutionary
level.

• The Model uses prototyping as a risk reduction
mechanism and allows for the development of
prototypes at any stage of the evolutionary
development.

• It maintains a systematic stepwise approach, like the
classic waterfall Model, and also incorporates into it
an iterative framework that more reflect the real
world.

3.2.2 Shortfalls of the Spiral Model

• One should possess considerable risk-assessment
expertise

• It has not been employed as much proven Models
(e.g. the Waterfall Model) and hence may prove
difficult to ‘sell’ to the client.

3.3 Concurrent Development Model

The concurrent development Model - called concurrent
engineering. It provides an accurate state of the current state of
a project. Focus on concurrent engineering activities in a
software engineering formation such as prototyping, analysis
Modeling, requirements specification and design. Represented
schematically as a series of major technical activities, tasks
and their associated states. Defined as a series of events that
trigger transitions from state to state for each of the software
engineering activities. Often used as the paradigm for the
development of client/server applications.

A client/server system is composed of a set of functional
components. When applied to client/server, the concurrent
formation Model defines activities in two dimensions :(i)
System dimension -System level issues are addressed using
three activities: design, assembly, and use.(ii) The component
dimension is addressed with two activities: design and
realization.

Two ways to achieve the concurrency:

System and component activities occur simultaneously and
can be Modeling using the state-oriented approach

Figure 6. Concurrent Model[Adapted From Google Images]

A typical client/server application is implemented with many
components, each can be designed and realized concurrently.

The concurrent formation Model is applicable to all types of
software development and provides an accurate picture of the
current state of a project. Rather than confining software
engineering activities to a sequence of events, it defines a
network of activities. Each activity on the network exists
simultaneously with other activities. Events generated within a
given activity or at some other place in the activity network
trigger transitions among the states of an activity[6].

References

1. Shah, MR Manan D., MR Amit A. Kariyani, and MR Dipak
L. Agrawal. "Allocation Of Virtual Machines In Cloud
Computing Using Load Balancing Algorithm." IJCSITS),
ISSN (2013): 2249-9555.

2.JJ Kuhl, "Project Lifecycle Models: How They Differ and
When to Use Them" 2002 , www.businessesolutions.com.

3.Karlm, "Software Lifecycle Models', KTH, 2006.

4.Shah, Manan D., and Harshad B. Prajapati. "Reallocation
and Allocation of Virtual machines in cloud
computing." arXiv preprint arXiv:1304.3978 (2013).

5.Shah Manan D, Dhiman Charusmita. “Cloud Computing
Architecture & Services” IJCSMC, Vol. 4, Issue. 11,
November 2015, pg.117 – 124 ISSN 2320–088X

6.Steve Easterbrook, "Software Lifecycles", University of
Toronto Department of Computer Science, 2001.

7.National Instruments Corporation, "Lifecycle Models", 2006
, http://zone.ni.com.

8.JJ Kuhl, "Project Lifecycle Models: How They Differ and
When to Use Them" 2002 , www.businessesolutions.com.

9.Karlm, "Software Lifecycle Models', KTH, 2006.

10.Rlewallen, "Software Development Life Cycle Models",
2005 ,http://codebeter.com.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol.6, No.2, Mar-April 2016

 132

11.Charusmita Dhiman, "Performance Evaluation Of AODV
Routing Protocol In Vehicular Adhoc Networks", RACCCT
12, 29-30 March, 2012, Surat, India organized by IEEE SCET,
ISBN: 978-81-88894-34-5, pp 93-99.

12. Charusmita Dhiman, “Novel approach to reduce routing
overhead in dense VANETS”, IJRCEE in volume 3 issue 5
Sep-Oct 2014 ISSN:2319-376X.

13.Kalpana Mudaliar & Charusmitha Dhiman. "Performance
Comparison of Location Area Scheme and Ant Colony
Optimization for Location Management in Cellular Network",
IJFTET, Volume: II , Issue: IV Publication Year: 2015 ,
Page(s): 19-22

