
IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 3, No.4, August 2013

290

DETECTING FUNCTIONAL SIMILARITY
BETWEEN JAVA FILES USING METRICS

Vidhya.K
Assistant Professor, Dept of CSE, Dr.MCET, TamilNadu,

India.
E.Mail:vidhyasridhar@drmcet.ac.in

Abstract - Two similar pieces of software code is called clones.
Software Developers often copy a section of code, and then paste
it with or without modification .Software clone detection is
employed to lessen the software maintenance cost and to improve
understandability of the system. It also helps in plagiarism
detection. Many code clone detection techniques exist and they
detect and identify various types of clones. Many such systems
primarily focus on the line-by-line comparison method, token-
based, PDG detection methods to find out the clones in the
system, which are costly in terms of computation time and
complexity. Software clones of small size (4-5 line) are called
simple clones. Frequent occurrence of simple clones may lead to
higher-level clones, for example method clones, file clones etc.
These existing systems will not figure out the fragment, which
does not have an exact code match but functionally similar to
each other. The proposed system captures higher level (File
Level) as well as the functional clones (Even with some
modification in code). The best part of this system is that, it uses
the combination of metric and textual analysis of a source code
for the detection of file level similarity in JAVA files. Number of
metrics are been identified and values of those metrics are used
in detecting similarity between files. The proposed system detects
all types of clones with high precision with less complexity.

Index Terms -- Metric Calculation, Metric Comparison, Text-
based Comparison, High Precision.

1. INTRODUCTION

Recent research states that software system unavoidably

contain a large amount of similar code, with up to 30 percent

of the total amount of code, mostly due to the copy-and-paste

programming practice, the framework-based development, or

design patterns. These similar code fragments, called code

clones, create several difficulties in software maintenance and

affect software quality. For example, many bugs occur due to

Inconsistent modifications made to cloned code. These bugs

could go unnoticed for a long time, reducing the integrity and

quality of the software [12].

Thirukumar .K
Assistant Professor(Selection Grade), Dept of CSE, Dr.MCET,

TamilNadu, India.
E.Mail:Thirukumar@drmcet.ac.in

Duplication of code occurs recurrently during the

development of hefty software systems. Code cloning is a

form of software reuse, and exists in almost every software

project. This informal form of reuse consists in copying, and

in due course modifying, a block of existing code that

implement a piece of essential functionality. Duplicated

blocks are called clones and the act of copying, including

slight modifications, is said cloning. [22].

Two code fragments can be similar based on the

similarity of their program text which is often the result of

copying a code fragment and then pasting to another location

or they can be similar in their functionalities without being

textually similar [25].Many Techniques have been proposed to

identify the simple clones. Repeated occurrence of simple

clone may lead to higher level clones such as method, file

level and directory clones [11].

 As the requirement is growing day by day coding is

becoming larger and complex. Extensive software

systems are pricey to build and, are even more

costly to maintain. Sometimes, developers take

uncomplicated way of implementation by copying

some fragments of the existing programs and use

that code in their work. This type of work is called

code cloning.

The following clone types were identified based on

the kind of similarity two code fragments can have: [17]

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 3, No.4, August 2013

291

 Type I: Identical code fragments except for variations in

white space (may be also variations in layout) and comments.

Type II: Structurally/syntactically identical fragments except

for variations in identifiers, literals, types, layout and

comments.

Type III: Copied fragments with further modifications.

Statements can be changed, added or removed in addition to

variations in identifiers, literals, types, layout and comments.

Type IV: (Functional Similarity) If the functionalities of the

two code fragments are identical or similar and referred as

Type IV clones. This type detects two or more code fragments

that perform the same computation but implemented through

different syntactic variants.

 The best part of the paper is detecting the file level

similarity in JAVA files by combining both the textual

analysis and the metric based approach .This is done with the

help of a tool designed in JAVA. This paper contains 5 major

sections. Section II discusses the related work, Section III

describes the implementation of the proposed system, In

section IV the results are been discussed the last section

concludes the paper.

II. RELATED WORK

Code clones have no consistent or precise

definition in the literature. Most consider code clones to

be identical or near identical fragments of source code.

Software clone detection is an active field of research.

The following section describes the different types of

approaches; each uses different representation of source

code in detecting the clones.

A. Text based technique

 It takes each line of source code as code

representation. Two code fragments are compared with each

other to find the matched sequences of text or strings. When a

match is found i.e. two or more code fragments are found to

be similar, then they are returned as clone pair by the detection

technique[16][17]. It is one of the fastest clone detection

approaches. It does not perform any syntactical or

semantically analysis on source code

B. Token based technique

 Each line of code is converted into a sequence of

token. Then the token sequences of lines are compared

efficiently through a suffix tree algorithm [11][14]. This

technique is slightly slower than text based method, because

of the tokenization step. This can easily detect both type 1 and

type 2 clones.

C. Abstract Syntax Tree (AST)

 Based Technique: Here, the program (source code)

is parsed into a parser tree or an abstract syntax tree (AST)

with a parser of language of interest. Then, using a tree

matching technique, similar sub trees are searched in the tree.

When a match is found corresponding source code of the

similar sub trees are returned as clone pairs or clone classes

[13]. By using AST as code representation gives this

technique a better understanding of the system structure.

However parsing source file is still a very expensive process

on both time and memory.

D. Metric – Based Technique

 In Metric based technique, instead of comparing the

code directly, different metric of code are gathered and these

metrics were compared to detect clones [16][17]. The

advantages of technique are it is more scalable and accurate

for large software system and it is a straight forward

technique.

III. Metric Based Clone Detection System

The objective of the system is to detect the functional

similarity between JAVA files using identified metrics. A tool

is developed in JAVA for the system and it detects the higher-

level clone called file clones in JAVA. The novelty of this

system is that it combines both the metric based and text based

techniques in detecting the file clones in JAVA. Various

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 3, No.4, August 2013

292

metrics have been formed and their values are used in the

detection process.

If match exists in the metric values then the textual

comparison is performed to confirm the clone pair. Fig 1

shows the architecture of the proposed system. Each part of

the system is described in detail

 Fig 1:.Architecture of the Proposed System

A. File preprocessing & Transformation

 Source codes of the 2 files are given as the input. In

preprocessing the statement which does not have any Effect

during analysis like comments, white spaces and pre-processor

statements are removed. Source code is re- structured to a

standard format.[16] Then the structured code is transformed

to a standard intermediary form based on the template. The

intermediate form comparison provides better results and

precision than comparing the source code as such [10]. This

form is used in the textual comparison of the candidates. The

following figure shows the template of the given source code.

Fig 2: Template

B. Computing the metric values [12]

The methods in the given file are identified by the

hand coded parser. Then the metrics are computed for each of

the methods identified and the values are stored in a database.

Then the metrics are computed for the complete file.

The following table lists the metrics computed for

methods[17]

1. No. of effective lines of code in each method.

2. No. of arguments passed to the method

3. No. of function calls in each method

4. No. of local variables declared in each method

5. No. of conditional statements in each method

6. No. of looping statements in each method

7. No. of return statements in each method

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 3, No.4, August 2013

293

8. No. of Assignment statements

The following lists the metrics computed for file level clone

detection

1. No of Effective lines of code

2. Total number of used variables

3. Number of methods defined

4. Total number of function calls

5. Sequence of function call

In a file all the methods defined may be or may not be

called and the order in which they are been called also matters.

So the metrics are framed in those aspects also

C. Detecting method level similarity [12]

 The computed metric values of two files are given as

the input for this phase. The Method level metric values are

compared. The metric values are stored as numeric values in a

data structure. The following table gives a sample which is

calculated for a method.

Table 1.Metric Values for a Method

No. of effective lines of code in method 54

No. of arguments passed to the method 2

No. of function calls in the method 1

No. of local variables declared in the method 6

No. of conditional statements in the method 5

No. of looping statements in the method 4

No. of return statements in the method 1

No. of Assignment statements 27

If match exists between Metric values of methods in

2 files, then the clone may exist in the file so it is proceeded to

detect the file level clones, otherwise declared as clone does

not exist.

The following figure shows the flow chart of the

proposed system

Fig 3: Flow chart of the system

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 3, No.4, August 2013

294

D. Detecting similarities between files

 In this phase, the computed metric values of 2 files

are given as the input. Because the method level clone exists it

cannot be declared that the files are similar. So the file level

metric values are compared. The following figure shows the

sample metric values calculated for a file.

Table 2 Metric Values For A File

No of Effective lines of code 180

Total number of used variables 12

Number of methods defined 3

Total number of function calls 3

Sequence of function call 2 1 3

While comparing the values, similarity between two

methods is matched. For example, the 1st method of file 1 may

match with 3rd method of file 2. These similarity measures are

again stored temporarily and it is used while checking the

sequence of function call. Sometimes the same function may

be called twice or a function defined may not be called at all.

In some cases the number of function call may be same but the

order in which they called may be different, which makes the

file to produce the different output. All these cases are

checked .If match exists it is followed by the textual

comparison of the intermediate form code, to confirm the

clone pairs; otherwise it is declared that the two files are not

similar.

IV. RESULTS AND DISCUSSION

The system has been tested with 2 JAVA files as

input and the results are produced based on the similarity

between files. A sample result is shown below which

states that the file level similarity exists and 96% of

similarity exists during the textual comparison

Fig 4: The system detects the existence of clone between 2 files

 The percentage of the similarity is computed by

performing the line by line comparison of the

intermediate form of the files and having the following 2

parameters, Number of similar lines and the Total

number of lines (Max.No.Lines (file1, file2)).While

Comparing the IF of the code, to detect the intentional

addition and deletion of the code, line n of the file 1 is

first compared with line n of file 2, if no match then it is

compared with n+1, n+2 so on up to some threshold

level .

 The system is also tested by comparing a

file with a folder. A folder is taken with 11 JAVA files

(Files 6-8 have file level match with the sample file and

Files 9,10 and 11 have method level clone and files 1-5

don’t have any match with the sample file) is taken.

Then the sample file is compared with all the files in the

folder and the results produced are shown below.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 3, No.4, August 2013

295

Table 3. Result of a file compared with a folder

S.No File in the

folder

Produced Results

1 File 1 Clone Does not Exist

2 File 2 Clone Does not Exist

3 File 3 Clone Does not Exist

4 File 4 Clone Does not Exist

5 File 5 Clone Does not Exist

6 File 6 File clone exists and the match

percentage is 100

7 File 7 File clone exists and the match

percentage is 99

8 File 8 File clone exists and the match

percentage is 96

9 File 9 Method clone Exists but The

number of fn call doesn’t match

10 File 10 Method clone Exists but The

sequence of fn call doesn’t

matches

11 File 11 Method clone Exists but the file

clone doesn’t exist

Total time taken 3 Seconds

V. CONCLUSION

This implemented system combines both the text

based and metric based techniques. Metric based technique is

a straight forward one, so it is a light weight technique. The

text based technique is the one which gives high precision.

Hence this system is designed to detect the cloned Files in

JAVA with high accuracy and reduced complexity. And this

system also detects the clones that are not structurally similar

but functionally same. This work can also be extended as a

generalized tool which accepts different programming

language as input and the existence of clone can be detected

across the source code of different languages.

REFERENCES
1. Baker,B., “Finding Clones with Dup: Analysis of

an Experiment,” IEEE Transactions on Software
Engineering, vol. 33, no. 9, pp. 608–621, 2007.

2. Basit, H.A., Stan Jarzabek “A Data Mining
Approach for Detecting Higher-Level Clones in
Software” IEEE Transactions On Software
Engineering, Vol. 35, No. 4, July/August 2009.

3. Baxter,I., Andrew Yahin, Leonardo Moura,
Marcelo Sant Anna, “Clone Detection Using
Abstract Syntax Trees,” in Proceedings of the 14th
International Conference on Software
Maintenance (ICSM'98), pp. 368-377,
Bethesda,Maryland, November 1998.

4. Brooks, F., 1975. The mythical man-month:
essays on software engineering, Reading Mass:
Addison-Wesley Pub. Co.5

5. Calefato,F., F. Lanubile and T. Mallardo,
“Function Clone Detection in Web Applications:
A Semiautomated Approach,” in Journal of Web
Engineering, vol. 3, no. 1, pp 3–21, 2004.

6. Ducasse,S., M. Rieger and S. Demeyer, “A
Language Independent Approach for Detecting
Duplicated Code,” in Proceedings of the 15th
International Conference on Software
Maintenance (ICSM’99), pp. 109–118,
September 1999.

7. Florian Deissenboeck, Benjamin Hummel Elmar
Juergens, Michael Pfaehler, Bernhard Schaetz
“Model Clone Detection in Practice” IWSC’10,
May 8, 2010

8. Gayathri Devi G , Dr.M.Punithavalli “An
Effective Software Clone Detection Using
Distance Clustering International Journal of
Engineering and Technology (IJET), Vol 5 No 1 Feb-
Mar 2013

9. Gayathri Devi G , Dr.M.Punithavalli “

Comparison and Evaluation On Metrics Based
Approach For Detecting Code Clones” Indian
Journal of Computer Science and Engineering
(IJCSE) Vol. 2 No. 5 Oct-Nov 2011

10. Gehan M. K. Selim ,King Chun Foo, Ying Zou
“Enhancing Source-Based Clone Detection Using
Intermediate Representation” 17th Working
Conference on Reverse Engineering, 2010

11. Hamid Abduk Basid,Stan JArzabek “A Data
Mining Approach for Detecting Higher Level
Clones in Software” IEEE Transactions On

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 3, No.4, August 2013

296

Software Engineering, Vol. 35, No. 4, July/August
2009

12. Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H.
Pham,Jafar Al-Kofahi, and Tien N. Nguyen
“Clone Management for Evolving Software” IEEE
Transactions On Software Engineering, Vol. 38,
No. 5, September/October 2012

13. Ira D.Baxter,Andrew yashin,Moura l,Sant M,Bier

L “Clone Detection Using Abstract syntax Tree”
Copyright 1998 IEEE. Published in the
Proceedings of ICSM’98, November 16-19, 1998

14. Kamiya,T., S. Kusumoto, and K. Inoue,
“CCFinder: A MultiLinguistic Token-Based Code
Clone Detection System for Large Scale Source
Code,” IEEE Trans.Software Eng., vol. 28, no. 7,
pp. 654-670, July 2002.

15. Kamiya,T.,Shinji Kusumoto, and Katsuro
Inoue,“A Token-based Code Clone Detection
Tool-ccfinder and its empirical evaluation,”
Technical report, 2000.

16. Kodhai.E, Kanmani.S, Kamatchi.A, Radhika.R,
Detection of Type-1 and Type-2 Clone Using
Textual Analysis and Metrics in ITC, 2010.

17. Kodhai.E, Perumal.A, and Kanmani.S, ”Clone
Detection using Textual and Metric Analysis
to figure out all Types of Clones” International
Journal of Computer Communication and
Information System(IJCCIS)- Vol2. No1. ISSN:
0976–1349 July – Dec 2010.\

18. Kodhai.E,V.Vijayakumar,G.Balabaskaran,
T.Stalin, B.Kanagaraj “Method Level Detection
and Removal of Code Clones in C and JAVA
Programs Using Refactoring” International
Journal of Computer Communication and
Information System (IJCCIS) – Vol2. No1. ISSN:
0976–1349 July – Dec 2010

19. Komondoor,R., and Susan Horwitz, “Using
Slicing to Identify Duplication in Source
Code,” in Proceedings of the 8th International
Symposium on Static Analysis (SAS'01), Vol.
LNCS 2126, pp. 40-56, Paris, France, July 2001.

20. Krinke,J., “Identifying Similar Code with Program

Dependence Graphs,” in Proceedings of the 8th
Working Conference of Reverse Engineering, pp.
301- 309, Stuttgart, Germany, October 2001.

21. Lakhotia,A., Junwei Li, Andrew Walenstein, and
Yun Yang,” Towards a clone detection
benchmark suite and results archive,” in
Proceedings of the 11th IEEE International
Workshop on Program Comprehension, pp. 285,
Washington, DC, USA, 2003.

22. Lanubile .F, Mallardo.T., “Finding Function
Clones in Web Applications” Proceedings of the
Seventh European Conference On Software
Maintenance And Reengineering (CSMR’03),
2003.

23. Mayrand,J., C. Leblanc and E. Merlo,
“Experiment on the Automatic Detection of
Function Clones in a Software System Using
Metrics,” in Proceedings of the 12th International
Conference on Software Maintenance
(ICSM’96), pp. 244–253, Monterey, CA, USA,
November 1996.

24. Merlo,E., “Detection of Plagiarism in University
Projects Using Metrics based Spectral
Similarity,” in the Dagstuhl Seminar: Duplication,
Redundancy, and Similarity in Software, 2007.

25. Prabhjot Kaur*, Harpreet Kaur, Rupinder

Kaur,”Comarison of Clone Detection
Tools:CONQAT and Solid SDD” International
Journal of Advanced Research in Computer
Science and software Enginering” 2012.

26. Roy, C.K. . and J.R. Cordy, “A Survey on
Software Clone Detection Research, Queen’s
School of Computing Technical Report No. 2007-
541, vol.115, September 2007.

27. Selim M.K., King Chun Foo “Enhancing Source-

Based Clone Detection Using Intermediate
Representation” 17th Working Conference on
Reverse Engineering, 2010

Vidhya K.: Assistant Professor in Dr.Mahalingam
College of Engineering and Technology, Pollachi, Tamil
Nadu, India, Interested in Software Engineering and
Mining

Thirukumar K. Assistant Professor (SG)in
Dr.Mahalingam College of Engineering and
Technology, Pollachi, Tamil Nadu, India, Interested in
Databases and Mining

