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Abstract—Time-frequency analysis was combined with array 
processing to develop a direction of arrival (DOA) estimation 
method.Spatial time-frequency distribution (STFD) was 
introduced as the natural means to deal with source signals that 
are localizable in the time-frequency (TF) domain. It was shown 
that estimating the signal and noise subspaces are improved by 
constructing the subspaces from the TF signatures of the signal 
arrivals rather than from the spatial data covariance matrix, 
which is commonly used in conventional multiple signal 
classification (MUSIC). Although the STFD overcomes the two 
problems of being sources non-stationary and low signal to noise 
ratio (SNR), the fundamental problem with this approach 
remains the need for the incorporation of STFD matrices 
computed only at the source auto term points. In other words, the 
instantaneous frequency (IF) signature is needed in real 
application of STFD. Identification of auto-term regions are often 
difficult for really closed space sources. Because the cross term 
masks the auto terms, it means the cross term amplitude is 
greater than the auto terms. In this paper, we have done this job 
by using the matching pursuit (MP) decomposition based on two 
different type dictionaries, Gaussian and chirplet. The MP 
distribution is used as a mask in order to extract the true TF 
points those belong to the signal IF signature or auto-term. 
Therefore, the auto-term regions are correctly obtained without 
having any pre-knowledge about the signal source and they are 
used for constructing the STFD matrix for DOA estimation. The 
experimental results show that our proposed method 
outperforms the conventional MUSIC. 
 

Keywords: Direction of arrival estimation, Instantaneous 
frequency signature. 

I. INTRODUCTION 
Antenna arrays collect multidimensional data that contains 
signals arriving from different sources.The most common 
structure is the uniform linear array (ULA), which consists of 
adjacent antenna elements are equally spaced on a straight line 
by a given distance. In array signal processing, the goal is to 
extract important information about the originating signals, of 
which only a mixture is observed. This information may be the 
number of sources, the DOA estimationof the sources or the 
signal waveforms. DOA estimation is one of the most 
fundamental tasks in array processing in order to find the 
spatial location of the impinging signals.The most well-known 

algorithm that reconstructs the spatial covariance matrix and 
works based on signal and noise subspace is MUSIC[1]. 
Under the condition that the observation period or the number 
of snapshot is long and SNR is not too low, this approach is 
known as a high resolution and accurate method which is 
widely used in the design of smart antennas[2]-[3].  

In many scenarios, signalsare non-stationary (i.e. the 
spectrumsare time variant such as the frequency 
modulatedsignals, LFM) and close in space. Since the non-
stationary signals exhibit time varying spectra, TFdistributions 
especially those belong to the Cohen class provide a natural 
means for the analysis of such signals[4]-[5]. STFD were 
introduced as the natural means to deal with source signals 
that are localizable in the TF domain [6]-[9].The STFD 
framework applies a form of joint-variable signal 
representation to expose any hidden TF signatures 
characterizing the data received by the antenna array. Signal 
analysis in a single domain, whether time or frequency, fails to 
reveal the local behavior of the signal and in expressing its 
power distribution over both time and frequency. On the other 
hand, bilinear transforms, such as Cohen’s class [4]-[5] of 
time-frequency distributions (TFD), capture the IF laws 
underlying the non-stationarity of the data. The STFD matrix, 
in lieu of the spatial covariance matrix, permits the auto- and 
cross-TFDs of the sensor data to retain the signal phase and, as 
such, embeds the source’s DOA information. DOA estimation 
approaches using subspace methods, such as MUSIC [1], and 
incorporating the STFDs have been shown to improve the 
performance over their covariance matrix counterparts[10], 
primarilybecause of their capability to successfully 
discriminate among sources and exclude some from 
consideration prior to subspace decomposition. Accordingly, 
the STFD-based DOA approaches become attractive for 
sources with close angular separations, but with distinctive IFs 
[11].  

The main challenge for STFD implementation is finding 
the correct TF points those are located on the true signal IF 
signature whenever source signals are close and so the cross 
terms magnitude is significant in comparison with the auto 
terms. So, it is known that the main difficulty of applying the 
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STFD-based DOA estimation approaches is the existence of 
cross-termsin the presence of multi-component signals [12]. 

MP is an adaptive signal decomposition technique [13]. It 
is energy conservative and was introduced based on using the 
Gabor functions as TF atoms at first and has been extended to 
other dictionaries, such as the chirplet dictionary [14]-[15]. 
Clearly, using atoms with more parameters provides higher 
flexibility in matching the signal, but also increases the 
computational cost. As long as, there is a compatibility 
between the decomposed signal and the used dictionary type, 
the MP distribution or auto-WVD is cross term free [16]. 

In this paper we employ the MP based on Gaussian and 
chirplet atoms to exploit the IF signature and implement the 
STFD for DOA estimation. The main advantages of using the 
MP decomposition is robust against cross terms and additive 
Gaussian noise as well. The experimental results shows that 
our proposed method outperforms the conventional MUSIC.  

This paper is organized as follows. In Section II, we 
review Wigner Ville distribution (WVD) as the best well 
known bilinear TF distribution belongs to the Cohen class, the 
conventional MUSIC, and STFD technique for DOA 
estimation. In Section III, at first, we provide a short overview 
of MP in general when the signal is noise free and also explain 
the MP distribution based on both Gabor and chirplet 
dictionaries, then, we present our proposed method for DOA 
estimation where the MP helps STFD and find the signal IF 
signature, we also show the experimental results. Finally, in 
Section IV, we have conclusion. 

The following notations are used in this paper. Boldface 
lower-case letters (e.g., a ) denote vectors, and boldface 
upper-case letters (e.g., A  ) denote matrices. [.]E represents 
the statistical mean operation. *(.) , T(.)  and H(.)  denote 
complex conjugate, transpose and conjugate transpose, 
respectively. (.)δ denotes the Kronecker delta function, and I 
is an identity matrix. . 

II. PRELIMINARY 
In this section, we review the WVDas the best wellknown 
distribution belong to the Cohen class,the MUSIC algorithm 
as the conventional method, and STFD as the modern method 
based on bilinear TF distribution for DOA estimation. 

A. Wigner Ville Distribution 
Time-frequency distributions have been used extensively for 
non-stationary signal analysis. The distribution describes the 
energy density of a signal simultaneously in both time and 
frequency. The class of all quadratic, shift invariant TF is 
known as the Cohen class [4]-[5]. WVD is the well-known 
belongs to this class: 

τττω ωτ detxtxtW j
x

−
+∞

∞−

∗∫ −+= )
2

()
2

(),(      (1) 

where fπω 2= . WVD has the best resolution among all 
other TF distributions in the Cohen class, but it generates 

cross-terms interference when analyzing multi-component 
signals. These cross terms show energy which does not really 
exist at particular time/frequency co-ordinates. The existence 
of cross-terms also causes the WV distribution to present 
negative values in certain regions of the TF plane and thereby 
renders the physical interpretation problematic. It is important 
to note that there are two types of cross terms named as inner- 
and outer-interference result of the interactions between the 
components of the same source signal, which is the case when 
the source signal itself is of multi-components and interactions 
between two signal components belonging to two different 
sources. 

B. MUSIC 
Assuming there are K non-coherent narrow-band signal 
sources with the different impinging angle Kkk ,...,2,1, =θ  in 
the space, the array is a ULA with M array elements. The 
array output vector is, 

)()()( ttt nAsx +=          (2) 

where Nt ,...,2,1= , and N  is the number of snapshots, 
T

M txtxtxt )](),...,(),([)( 21=x  is the array output vector, 
T

K tststst )](),...,(),([)( 21=s  is the signal source vector and 
T

M tntntnt )](),...,(),([)( 21=n  is an additive noise vector whose 
elements are modeled as stationary, spatially and temporally 
white Gaussian, zero-mean complex random processes, 
independent of the source signals. That is, 
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πω =  is the spatial frequency, λ  denotes the 

wavelength, and d is the inter-element spacing. The output 
array covariance matrix or the spatial covariance matrix is: 

IAACxxC ssxx
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where )]()([ ttE HssCss =  is the source covariance matrix. 
When the number of sources is less than the number of 
sensors, the source DOAs can be estimated by employing 
subspace approach, MUSIC [1]. The basic idea of the MUSIC 
algorithm is projecting the search steering vector to the noise 
subspace, nE , of the spatial covariance matrix xxC . In 
practice, the true covariance matrix xxC  is unknown, and is 
estimated from the available data vectors as 

NttN
t

H /)()(ˆ
1∑ == xxCxx . Denote the estimate of the noise 

subspace as nÊ , then the DOA of the sources in the field of 
view is estimated by searching the peaks ofthe spatial pseudo-
spectrum: 
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C. Spatial Time Frequency Distribution 
Under the linear data model, (2), the STFD matrix can be 
defined for any Cohen’s class of TFDs [6]-[7]. For WVD, the 
statistical expectation of the STFD matrix of )(tx  is 
expressed as,  

IA)](W[A)](W[ ssxx
2
n

Ht,Et,E σωω +=      (5) 

where ),( ωtssW  is the signal TFD matrix whose entries are the 
auto- and cross-source WVDs. The dimension of matrix 

),( ωtxxW is MM × , whereas that of ),( ωtssW  is KK × . We 
note that )],([ ωtE xxW can be constructed for any selected TF 
points or TF regions. The spatially averaged TFD matrix was 
proposed in [8]-[9] to reduce noise and cross-terms 
contributions. It was shown [6]-[7] that the formula relating 
the TF distribution matrix of the sensor data to that of the 
sources, (5), is identical to the relationship between the data 
covariance matrix and the source correlation matrix, (3), when 
the additive noise is spatially and temporally white Gaussian, 
zero-mean complex random processes, and independent of the 
source signals. So, the TF correlation matrix, xxĈ , 
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is constructed by averaging on proper TF points or regions, 
then the eigen decomposition to xxĈ  can be performed to 
identify the signal and noise subspace and then estimate the 
DOAs. The proper TF points are those belong to the sources 
auto-terms.As a result of the averaging process is decreasing 
the noise level. Any way the main difficulty of the above 
approach is need to construct the STFD matrix, (6), from auto 
term points. On the other word, we need the signal IF 
signature. In this paper by using the MP decomposition based 
on Gaussian and chirplet, we define a proper mask in order to 
find the auto terms or proper TF points and construct the 
STFD matrixor the TF correlation matrix by averaging without 
having any pre-knowledge about signal sources. 

 

 
(a) 

 
(b) 

 
(c ) 

Figure 1. Time frequency distribution of polynomial phase signal, (a) WVD, 
(b) MP distribution based on Gaussian atom (decomposition number is 8), (c ) 
MP distribution based on chirplet atom (decomposition number is 3). 

 

III. DOA ESTIMATION 
In this section, we provide a short overview of MP in general 
based on both Gabor and chirplet dictionaries. Then, we 
present our proposed method for DOA estimation where the 
MP helps STFD and find the signal IF signature, we 
alsoperform some simulations in order to have a comparison 
with the conventional MUSIC.  



IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555  
Vol. 3, No.3, June 2013 

 

  233

A. MP Decomposition 
The MP adaptive signal decompositionis based on a dictionary 
that contains a family of functions called elementary functions 
or TF atoms [13].Let }{ lD g=  is a redundant dictionary 
including a family of functions which are normalized to unit 
norm, i.e. 1|||| =lg , where ∑ ∗>==<

t
lllll tgtgg )()(,|||| 2 gg  

denotes the vector inner product, and ‘t’ refers to discrete time. 
The decomposition of a signal is performed by projecting the 
signal over the function dictionary and then selecting the 
atoms which can best match the local structure of the signal. 
So, we compute a linear expansion of x  over a set of 
elementary functions selected from the dictionary in order to 
best match its inner structures. After L iterations, the MP 
decomposition of an arbitrary signal xcan be written as, 

xgx L
L

l
ll Rc += ∑

−

=

1

0

~ ,         (7) 

where xLR  is the residue after L times signal decomposition, 
lg  is the chosen atom, l is the iteration index, and lc~  is the 

complex coefficient,  

>=< l
l

l Rc gx,~           (8) 

which is obtained by the inner product of the residual xlR  and 
atom lg . By letting, xx =0R , the MP algorithm decomposes 
the residue at each stage. It was shown [13] that the MP 
recovers the components of any noise free signal, x, when the 
dictionary is complete,  

∑
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=
=

0

~
l
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In this case, the MP decomposition is energy conservative 
[13], i.e., 

∑
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Since the equality in (9) applies to all signal samples, 
Nt ,...,2,1= , it can be written as, 

∑
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The MP dictionary includes TF atoms, 
)()(1)( tje

s
ut

s
tg φγ −
= , in general, where 

24/12)( tet πγ −=  

denotes the Gaussian envelope and )(tφ  is an arbitrary phase. 
Although MP at first introduced with Gabor dictionary [13],  
 

 
Figure 2. RMSE of DOA estimation for original MUSIC, and our proposed 

method. The impinging angle is o10  and the number of trial is 20, the number 
of snapshot is 301. 

 

where tt ζφ =)(  and the atoms are specified by three 
parameters, ),,( ζus , it has been extended to other 
dictionaries, such as the chirplet dictionary [14]-[15], where 

2

2
)( ttt β

ζφ +=  and the atoms are defined by four parameters, 

),,,( βζus . We notice, among all atoms with Gaussian shape 
envelope, the Gabor and chirplet atoms are unique in the sense 
that they have the highest concentration in both the time and 
frequency domains [17]. The elements of the parameter set 

),,,( βζus  are real, and denote, in order, the width, the time 
center, the frequency center, and the frequency modulation 
rate. In addition, the width, s, is always positive. Generally, 
there is no analytical solution for finding the optimum values 
of MP atoms parameters. As a result, there is a trade-off 
between flexibility in matching the signal and  

computational cost. It is noted that the MP attempts to 
decompose a discrete time signal into a large number of atoms 
which are generated from a mother Gauusian function, with a 
pre-considered phase based on the dictionary type. The atoms 
are sampled in time to have the same length, N, as input signal 
or the residuals. In addition, the parameters that described an 
atom should also be discretized. In this paper, according to the 
length of observed signal snapshots, we discretize the 
parameter s, followed by other variables, to generate the 
dictionary based on Gabor, and chirplet[18]. A high value of 
M and a zero value for the residual energy decompose a signal 
completely, (10), and The WVD of the decomposed signal is, 
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The double sum corresponds to the cross terms of the WVD, 
so the MP distribution is defined by keeping the first term 
[13], 
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(a) 

 
(b) 

 
(c) 

Figure 3. TF distribution of two parallel LFM signal, (a) WVD, (b) MP 
distribution based on Gaussian atom (decomposition number is 8), (c ) MP 
distribution based on chirplet atom (decomposition number is 2). 
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where ),( ω
γ

tW
lg is the WVD of the appropriate atoms. As long 

as the chosen atoms are either Gaussian or chirplet, then the 
MP distribution is always positive irrespective of the signal 
being analysed and it can be interpreted as an energy density 

function of x  in the TF plane. In [19], we derived the MP 
distribution based on these two dictionaries as follows: 
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B. Our Proposed Method and Experimental Results 
MUSIC algorithm is not suitable for signal sources which are 
non-stationary and close in space. Making use of TF 
transformation can overcome the limitations of conventional 
subspace method, MUSIC, but the STFD matrix should be 
constructed by choosing the proper TF points those belong to 
the signal source auto terms. Adaptive signal decomposition or 
MP is an approach to avoid cross terms in the TF plane and 
thus have no problematic physical interpretation in 
comparison with the other distributions belong to the Cohen 
class. In this paper we use the MP distribution (because of 
mentioned feature) based on using both Gaussian and chirplet 
atoms in order to obtain a proper mask for averaging in order 
to implement the STFD and thereby obtaining the TF 
correlation matrix. For this purpose, at first we decompose 
only the first output array that is considered as the reference 
element. Then we compute the MP distribution and we sure no 
cross terms are there. Finally, we use the MP distribution as a 
mask in order to find the proper TF points those belong to the 
sources auto terms and obtain the TF correlation matrix by 
averaging on those selected TF points or regions for eigen 
decomposition and so DOAs estimation. In this work, no 
needs to distinguish the IF source signature. Now in following, 
during two simulation examples, we show, how our proposed 
algorithm outperforms the conventional MUSIC where as it 
choose the proper TF points automatically. 

 

Example 1: The ULA of M=4 sensors with equal inter-sensor 
spacing of half wavelength ( 2/λ=d ) is used, and N=301 
snapshots are employed for each simulation run. We consider 
the polynomial phase signal as a source  

)))002.0sin(317.0(2exp()( ttjts ππ=      (16) 

with o10  impinge on the array from the far-field. The WVD of 
the source is shown in Fig. 1-a. Although the signal seems to 
be one component, there is inner-interference, because of 
being signal polynomial phase. We decompose the signal of 
reference element (chose 8 Gaussian atoms and 3 chirplet 
atoms) and the MP distribution based on Gaussian and chirplet 
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Figure 4. RMSE of DOA estimation for original MUSIC, and our proposed 

method. The impinging angle is o10  and o20 and the number of trial is 20, 
the number of snapshot is 101. 

 

atoms are shown in Figs. 1-b and 1-c. The noise is additive 
Gaussian white noise. The results are computed over 20 
independent runs for each SNR under the same condition. Fig. 
2 shows the averaged root mean square error (RMSE) of DOA 
estimation of our proposed method and the conventional 
MUSIC. Although there is only one source, because of being 
non-stationary, the performance of our proposed algorithm 
outperforms the conventional MUSIC. 

 

Example 2:The ULA of M=8 sensors with equal inter-sensor 
spacing of half wavelength ( 2/λ=d ) is used, and N=101 
snapshots are employed for each simulation run. We consider 
two LFM signal sources, 

))24(2exp()()),29(2exp()( 2
2

2
1 ttjtsttjts +=+= ππ  (17) 

with impinge on the array from the far-field. The incident 
directions are o10 and o20 . The WVD of the two sources is 
shown in Fig. 3-a. For single LFM signal, WV distribution can 
gain quite high resolution both in time domain and frequency 
domain. However, it has a very big drawback that it will 
generate cross interference terms in case of multi component 
signals, which will seriously influence the DOA estimation 
performance reduced. Although some people try to eliminate 
the cross interference terms to improve the DOA estimation 
accuracy in case of multi signal sources, we try to detect and 
use only the auto terms by MP.As the two parallel LFM are 
really close, the cross term amplitude is greater than auto-
terms. It means the methods based on finding peaks fail. We 
decompose the signal of reference element (chose 8 Gaussian 
atom and 2 chirplet atom) and obtain the MP distributions 
which are shown in Figs. 3-b and 3-c. The noise is additive 
Gaussian white noise. The MP distribution is used as a mask 
in order to construct the STFD matrix by averaging TF points 
which belong to signal IF signature or auto terms. The RMSE 
of DOA estimation are computed over 20 independent runs for 
each SNR for our proposed method and conventional MUSIC 
and shown in Fig. 4. Because the spectrum of the source signal 

is time-variant, the conventional MUSIC failed to resolve the 
two closely spaced sources at low SNR. 

Although our proposed method based on both Gaussian 
and chirplet has close performance, using the chirplet atoms 
has more freedom and thereby can intuitively better match the 
signal under consideration with different IF signature. As a 
consequence, the MP algorithm running time is problematic. 

IV. CONCLUSION 
It was shown that for non-stationary and closely space signals 
as uncorrelated sources in array processing, the MUSIC 
algorithm failed to estimate the DOAs especially for low SNR. 
Constructing the STFD matrix and then eigen value 
decomposition is one way to overcome this problem, but for 
implementation, the IF signature is needed. In this paper, A 
new method to exploit the IF signature is proposed by using 
the adaptive MP decomposition based on two different 
dictionaries, the Gaussian and chirplet. By using the MP 
adaptive signal decomposition, the auto terms are detected 
automatically and no concern about existing cross terms are. 
The result indicates, the algorithm successfully estimates the 
direction of arrival of the incidents signals impinging on the 
antenna array and outperforms the conventional MUSIC.  
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