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Abstract--- Now a days the use of Location Based Services (LBS) 
gained importance among the users. In most of the cases, users 
do not want to reveal their personal information to their service 
providers. Sometimes mobile devices are out of the specified 
range which cannot be processes by servers. Hence 
confidentiality, privacy and up to date and optimal answers will 
be important aspects in location based services. In this paper we 
extend two features called safe zone and anonymizer to overcome 
the problems faced by LBS now.  
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I.  INTRODUCTION 

With the extensive use of GPS devices, more and more 
people are using location based services. Various applications 
like digital battle field, highway patrol, traffic control rely on 
LBS. These applications are increasing day by day require 
query processing which should be done quickly and 
effectively. For example, when a moving user wants to go to 
nearby restaurant and issue a query, the call center may locate 
all the nearby restaurants and dispatch them to user.  

       Since the user is moving, he/she requires immediate 
reply. After sometime the call center gives answers based on 
the location from which user gave initial query. But at that 
time user may be in another location but he cannot access the 
given answers. To prevent this we propose safe zone based on 
user’s location over a range and an anonymizer. The 
anonymizer should not reveal the personal information to 
LBS. All the processing are done by transformed spatial 
queries. In this same situation, we have taken into account of 
quality attributes for queries and safe zone. For eg: in this, the 
quality attributes are price, star, etc of restaurants.  

 

Figure  1. Object at different position and time 

      In Figure 1 an object O is at one position at time T1 and 
the same object is at another position at time T2. The circles 
represent safe zones. The intersected part will be pruned from 
further search. 

II.   RELATED WORK 

A. Location Selection Queries 
 
      In the past, different constraints have been combined with 
conventional spatial queries to select semantic cally optimal 
locations or objects. Du et al. [1] proposed the optimal 
location query. Involving a site set S, a weighted object set O, 
and a spatial region Q, an optimal-location query returns a 
location in Q with maximum influence. The influence of a 
location l is the total weights of objects in O, each of which 
has l as its nearest neighbor in S. In other words, the influence 
of a location is the sum of weights of all its reversed nearest 
neighbors (RNNs). 
 
      Yiu et al. [2] formalized the top-k spatial preference 
query, which returns the k spatial objects with the highest 
ranking scores. Objects are ranked based on an aggregate 
score function that is defined for the feature qualities in their 
spatial proximity. Such score functions, however, do not 
support multidimensional dominance relationship. Therefore, 
the top-k spatial preference query is essentially different from 
our FDL query. 
 



IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555  
Vol. 3, No.1, February 2013 

  144

      Continuous monitoring of spatial queries has been 
extensively studied in recent past . Prabhakar et al. [3] 
proposed velocity constrained indexing and query indexing 
for continuous evaluation of static queries over moving 
objects. Mokbel et al. [4] introduced an algorithm (SINA) for 
evaluating a set of concurrent spatial queries, which reduces 
the overall cost by shared execution and incremental 
evaluation. 
 
      Gedik et al. [5] introduce a technique called MobiEyes, 
which reduces the computation load on the server and 
communication costs between the clients and the server by 
delegating some computation load to the client objects (e.g., 
mobile devices). 

III.     SYSTEM ARCHITECTURE 

 

Figure 2.    System Architecture 

      In Figure 2, the initial stage for the system architecture is 
giving query. Here, snap shot query, nearest neighbor query, 
range query will be taken. After sending the query to server it 
mainly searches for location. Then it creates one safe zone for 
the object to retrieve the result. The safe zone of a query is the 
area with a property that while the query remains inside it, the 
results of the query remain unchanged. Hence, the query does 
not need to be re-evaluated unless it leaves the safe zone. The 
shape of the safe zone is defined by the so-called guard 
objects. After getting the result server rank location and send 
to querying user.  
 

IV.  FRAMEWORK 

      In this section, we first give a solution overview and 
introduce the terms and notations used in this paper. 

A.  Solution Overview 

      In figure 3, the first phase of proposed system is shown. 
At first the user sends a spatial query via anonymizer.  It 
transforms the respective query and gives it to Location Based 
Server(LBS). The LBS processes query and stores it. 

 

Figure 3.   Phase I of system 

 

Figure 4.   Safe Zone 

      Since we consider a moving query, the user changes 
his/her position frequently. So we create safe zone for certain 
range and process query. The safe zone is periodically created 
at same time intervals. At first, LBS processes the spatial 
query and gives the result to user by utilizing safe zone. The 
results will not be changed within the zone.  Once the user 
gets result, his/her mobile device sends one reply to LBS. 
After certain time user moves and will be in different position. 
Then another safe zone is created and same process is done. 
The shaded part in Fig 4 represents intersected part of three 
safe zones. The LBS do not process those regions because 
they are already searched which leads to decrease in time.  

      If the LBS do not receive any reply from mobile device, it 
stores the result. Sometimes, mobile devices are out of range 
and could not reply to servers and sends reply once it comes 
within range. At that instant, LBS look whether the device 
within that safe zone or not. If it is in the safe zone results will 
not be changed.  

 

 

Figure 5.    Phase II of system 

      Figure 5 shows phase II of system. After processing 
spatial queries like range or nearest neighbor LBS send back 
results to user via anonymizer. In this whole process, any of 
user’s information will not be revealed to LBS. This assures 
privacy and confidentiality. 
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B.  Framework and example for spatial K-anonymity 
 
      In this framework (figure 6), a user sends his location and 
query to the anonymizer through a secure connection. The 
anonymizer removes the id and personnel information of the 
user and transforms his location through a technique called 
cloaking. Cloaking hides the actual location by a K-
anonymizing spatial region (K-ASR or ASR), which is an area 
that encloses the client that issued the query, as well as at least 
K-1 other users. The anonymizer then sends the ASR to the 
LBS, which returns to the anonymizer a set of candidate 
results that satisfy the query condition for any possible point 
in the ASR. The LBS may be compromised, i.e., an adversary 
may have complete knowledge of all queries received by the 
LBS. 
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Figure 6.  General Framework 
 
 
 
 
 
 
 

V.    SAFE ZONE CONSTRUCTION 
 

A. Algorithm  outlines the solution(Safe Zone) 
 
      A min-heap is initialized with the root entry of the R-tree. 
The entries are de-heaped iteratively until the heap becomes 
empty. If a de-heaped entry e has maxdist(e, q) < r, then all 
the objects in it are internal and we apply pruning rules 1 and 

4. If the entry is pruned, we do not need to check any objects 
within it for the construction of the safe zone. 
 
Algorithm 1 Range Query (q, r)  
 
Input: q: the query point; r: range of the query; 
Description: 
 initialize a min-heap H with root of the R-Tree 
 while H is not empty do 
  deheap an entry e 
               if maxdist(e, q) < r then 

 if pruned using rules 1 and 4 then 
                       insert all objects of e in the answer list 
       continue 
               else if mindist(e, q) > r) then 
                   If pruned using rules 2, 3 and 5, continue; 
               if e is an object then 
                   TrimSafeZone(e,q,S) /* Algorithm 2 */ 
                   if e is an internal object, insert in the answer list 
               if e is a leaf or index node then 
                   for each entry c in e do 
                             insert c into H with key set to its minimum 
distance from boundary 
send guard objects and answer list to the query. 

Algorithm 2 TrimSafeZone (o, q, S) 
 
Input: o: an object o to be used for updating the safe zone; 
             q: the query point; S: the list of current guard objects; 
Description: 
 
  for each guard object oi in S do 

     for each intersection point vi of circles of o and oi 
do 
                             add vi to vertices list if vi lies on the 
boundary of the safe zone 

 add o to the list of guard objects S 
  if o is an internal object then 
                       remove every vertex v if dist(o, v) > r 

 else if o is an external object then 
                       remove every vertex v if dist(o, v) < r 
               remove every guard object o from S if all its related 

vertices have been removed. 

B.  Algorithm  The calculation of safe region for range query  
      The purpose of this algorithm is to calculate the safe 
region radius and decide the query result set. The safe region 
radius r is returned for the object o under query q. The 
Boolean return value of true or false indicates whether object 
o is within the query result set. 
 
SafeRegion(q, o, & r) 
{ 
if (q is a rectangular range query) then 
{ 
//Three circumstances exist, 
//A: o.p is inside query region I 
//B: o.p is inside query region II 
//C: o.p is inside query region III 
if (o.p is inside query region I) then 
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{ 
r = distance from o.p to the closest edge of the 

rectangular 
query region; 
return true; 
} 

else if (o.p is inside query region II) then 
r = distance from o.p to the closest edge of the 

rectangular 
query region; 

else // o.p is inside query region III 
r = distance from o.p to the closest vertex of the 

rectangular query region; 
return false; 
} 

else if (q is a circular range query) then 
{ 
//Two circumstances exist, 
//A: object o is inside the 
//circular query region 
//B: object o is outside of the 
//circular query region 
doq= dist(o.p, q.circle.p); 
//dist(a, b) represents the distance 
//between point a and point b. doq is the //distance between 
object o and query q. 
r = ABS(doq - q.circle.r); 
if (doq <= q.circle.r) then 
return true; 

else 
return false; 
} 
} 

C.   Safe zone techniques 

      Initially, the whole space is assumed to be the safe zone. 
We then access each object that cannot be pruned, and use its 
circle to trim the safe zone. The algorithm stops when all the 
objects that cannot be pruned are accessed. The order in which 
the objects are accessed is important as better access order 
retrieves fewer objects that affect the safe zone. We first 
present our proposed access order. Secondly, we present our 
query processing algorithm followed by the algorithm to trim 
the safe zone. Finally, we present an efficient technique to 
update the safe zone when the query leaves it. 
 
 
D.   Access order 
 

      After applying the pruning rules presented above, there 
may be several objects left in the unpruned area. The order in 
which these objects are accessed is important. Intuitively, the 
objects that lie closer to the boundary of the range query have 
a more significant effect on the shape of the safe zone and 
should be accessed first. 
 
E.   Updating the safe zone when query leaves it 
  
      When the query leaves its safe zone, it sends its current 
location and current guard objects to the server. The server 
updates the answer list (the list of internal objects), computes 
the new safe zone and sends it to the query. A straightforward 
approach is to compute the safe zone and answer list from 
scratch. However, this is not only expensive but can also 
cause a large amount of data to be transmitted from the server 
to the query if the answer list contains a large number of 
objects. In this section, we propose an effective approach to 
update the safe zone and the answer list, called smart-update. 
 

VI.   EXPERIMENTS  
      To evaluate the performance of our proposed approach, 
we compare our approach with an optimal algorithm and a 
naive algorithm. We assume that the optimal algorithm 
already knows the safe zone and updates the results only when 
the query leaves the safe zone. To compute the initial results, 
the optimal algorithm visits the objects that lie within the 
range. To update the results, the algorithm searches only the 
area that may contain the new answers. We only consider the 
I/O cost for the optimal algorithm (the CPU time is assumed 
to be zero). 

  
      The naive algorithm prunes every object oi such that its 
circle does not intersect with the circle of any guard object. 
That is, an object or rectangle can be pruned if its distance 
from all guard objects is greater than 2r. 
 
      All the experiments were conducted on Intel Xeon 2.4 
GHz dual CPU with 4 GBytes memory. We used real dataset 
as well as synthetic dataset. The real dataset3 contains 175, 
813 points of interests in North America that corresponds to a 
data universe of 5000Km×5000Km. To verify the theoretical 
analysis, we created synthetic datasets consisting 50, 000 to 
150, 000 points following uniform distribution within the 
same data universe size. The objects are indexed by R-tree 
with node size set to 2K. 

 
 
  

      We simulated moving queries (moving cars) by using the 
spatio-temporal data generator [25]. The average speed of 
moving queries varies from 40 Km/hr to 120 Km/hr. All 
queries are continuously monitored for 5 minutes and the 
results shown correspond to the average monitoring cost for a 
single query for the 5 minutes duration. All the experiment 
results shown correspond to the real dataset except the results 
where we show the effect of number of objects.  
 

A.  Cost comparison 
      The cost of each algorithm consists of I/O cost (by 
charging 2ms for each node access) and CPU cost (assumed 
zero for the optimal algorithm). The naive algorithm was at 
least 20 times slower than our algorithm for all settings so we 
exclude it from figures to better illustrate the comparison of 
our algorithm with the optimal algorithm. In Figure 7. A and 
Figure 7. B, we compare the cost of our algorithm with the 
cost of optimal algorithm for different ranges and different 
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number of objects . The performance of our algorithm is close 
to the optimal algorithm. Main cost for our proposed approach 
is the I/O cost which is very close to the I/O cost of the 
optimal solution. This shows that the overhead of computing 
the safe zone is very small compared to the cost of the range 
query. 
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Figure 7.  Efficiency 
 
      In Figure 8, we show the expected distance for queries run 
on the synthetic dataset with increasing number of objects and 
increasing range of the query. It shows that the actual 
expected distance is close to the expected bounds. Moreover, 
the actual expected distance is from 300 meters to 1200 
meters. 
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                                         Figure 8. Expected Distance 
 
 
 
 
 
      Figure 9 shows the average number of guard objects for 
all queries and compares the theoretical bound with the actual 
number of guard objects. As stated in Section V, our 
theoretical upper bound is valid for the queries for which 
maximum distance to the safe zone is smaller than C · mup 
where C is a constant. We observed that when C is set to 2, 
30% to 50% queries satisfy the constraint. We call such 
queries the nominated queries. 
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Figure 9.  Number of guard objects 
 
      In Figure 9, we show the average number of guard objects 
for all queries as well as the average number of guard objects 

for the nominated queries. It is interesting to note that the 
average number of guard objects for all queries is around 5 
regardless of the experiment settings. 
 

VII.   CONCLUSION 
      Our strategy does not require computation over the 
terminal devices. Therefore, cost of the terminal devices is 
reduced under the precondition of equal or better system 
performance. Secondly, terminal devices do not need to 
download the safe region information from the server which 
reduces the communication cost effectively. Finally, 
computation is simplified by applying circular safe regions. 
Hence the server workload is reduced which improves the 
system scalability. Possible future works of the research 
include implementation of the strategy in an applied MOD 
engine for a information system providing LBS to public 
transportation, taxis and private vehicle devices or pedestrians 
with hand-held mobile devices. Application of our strategy 
potentially provides real-time range queries and kNN queries 
to support LBS at a low cost with a high performance in 
addition to system design and implementation ease and 
flexibility. 
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