
IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 3, No.1, February 2013

 143

Defending User Location Privacy with Safe
Zone in Mobile Data Management

Infrastructures
Sakthi Priya Karthiga
Department of Computer Science and Engineering Department of Computer Science and Engineering
Pondicherry Engineering College Pondicherry Engineering College
Pondicherry, India Pondicherry, India
sakthipriyav10@gmail.com vkarthigakkl@gmail.com

Abstract--- Now a days the use of Location Based Services (LBS)
gained importance among the users. In most of the cases, users
do not want to reveal their personal information to their service
providers. Sometimes mobile devices are out of the specified
range which cannot be processes by servers. Hence
confidentiality, privacy and up to date and optimal answers will
be important aspects in location based services. In this paper we
extend two features called safe zone and anonymizer to overcome
the problems faced by LBS now.
Keywords; Spatial Objects; anonymizer; safe zone; database
management;

I. INTRODUCTION

With the extensive use of GPS devices, more and more
people are using location based services. Various applications
like digital battle field, highway patrol, traffic control rely on
LBS. These applications are increasing day by day require
query processing which should be done quickly and
effectively. For example, when a moving user wants to go to
nearby restaurant and issue a query, the call center may locate
all the nearby restaurants and dispatch them to user.

 Since the user is moving, he/she requires immediate
reply. After sometime the call center gives answers based on
the location from which user gave initial query. But at that
time user may be in another location but he cannot access the
given answers. To prevent this we propose safe zone based on
user’s location over a range and an anonymizer. The
anonymizer should not reveal the personal information to
LBS. All the processing are done by transformed spatial
queries. In this same situation, we have taken into account of
quality attributes for queries and safe zone. For eg: in this, the
quality attributes are price, star, etc of restaurants.

Figure 1. Object at different position and time

 In Figure 1 an object O is at one position at time T1 and
the same object is at another position at time T2. The circles
represent safe zones. The intersected part will be pruned from
further search.

II. RELATED WORK

A. Location Selection Queries

 In the past, different constraints have been combined with
conventional spatial queries to select semantic cally optimal
locations or objects. Du et al. [1] proposed the optimal
location query. Involving a site set S, a weighted object set O,
and a spatial region Q, an optimal-location query returns a
location in Q with maximum influence. The influence of a
location l is the total weights of objects in O, each of which
has l as its nearest neighbor in S. In other words, the influence
of a location is the sum of weights of all its reversed nearest
neighbors (RNNs).

 Yiu et al. [2] formalized the top-k spatial preference
query, which returns the k spatial objects with the highest
ranking scores. Objects are ranked based on an aggregate
score function that is defined for the feature qualities in their
spatial proximity. Such score functions, however, do not
support multidimensional dominance relationship. Therefore,
the top-k spatial preference query is essentially different from
our FDL query.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 3, No.1, February 2013

 144

 Continuous monitoring of spatial queries has been
extensively studied in recent past . Prabhakar et al. [3]
proposed velocity constrained indexing and query indexing
for continuous evaluation of static queries over moving
objects. Mokbel et al. [4] introduced an algorithm (SINA) for
evaluating a set of concurrent spatial queries, which reduces
the overall cost by shared execution and incremental
evaluation.

 Gedik et al. [5] introduce a technique called MobiEyes,
which reduces the computation load on the server and
communication costs between the clients and the server by
delegating some computation load to the client objects (e.g.,
mobile devices).

III. SYSTEM ARCHITECTURE

Figure 2. System Architecture

 In Figure 2, the initial stage for the system architecture is
giving query. Here, snap shot query, nearest neighbor query,
range query will be taken. After sending the query to server it
mainly searches for location. Then it creates one safe zone for
the object to retrieve the result. The safe zone of a query is the
area with a property that while the query remains inside it, the
results of the query remain unchanged. Hence, the query does
not need to be re-evaluated unless it leaves the safe zone. The
shape of the safe zone is defined by the so-called guard
objects. After getting the result server rank location and send
to querying user.

IV. FRAMEWORK

 In this section, we first give a solution overview and
introduce the terms and notations used in this paper.

A. Solution Overview

 In figure 3, the first phase of proposed system is shown.
At first the user sends a spatial query via anonymizer. It
transforms the respective query and gives it to Location Based
Server(LBS). The LBS processes query and stores it.

Figure 3. Phase I of system

Figure 4. Safe Zone

 Since we consider a moving query, the user changes
his/her position frequently. So we create safe zone for certain
range and process query. The safe zone is periodically created
at same time intervals. At first, LBS processes the spatial
query and gives the result to user by utilizing safe zone. The
results will not be changed within the zone. Once the user
gets result, his/her mobile device sends one reply to LBS.
After certain time user moves and will be in different position.
Then another safe zone is created and same process is done.
The shaded part in Fig 4 represents intersected part of three
safe zones. The LBS do not process those regions because
they are already searched which leads to decrease in time.

 If the LBS do not receive any reply from mobile device, it
stores the result. Sometimes, mobile devices are out of range
and could not reply to servers and sends reply once it comes
within range. At that instant, LBS look whether the device
within that safe zone or not. If it is in the safe zone results will
not be changed.

Figure 5. Phase II of system

 Figure 5 shows phase II of system. After processing
spatial queries like range or nearest neighbor LBS send back
results to user via anonymizer. In this whole process, any of
user’s information will not be revealed to LBS. This assures
privacy and confidentiality.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 3, No.1, February 2013

 145

B. Framework and example for spatial K-anonymity

 In this framework (figure 6), a user sends his location and
query to the anonymizer through a secure connection. The
anonymizer removes the id and personnel information of the
user and transforms his location through a technique called
cloaking. Cloaking hides the actual location by a K-
anonymizing spatial region (K-ASR or ASR), which is an area
that encloses the client that issued the query, as well as at least
K-1 other users. The anonymizer then sends the ASR to the
LBS, which returns to the anonymizer a set of candidate
results that satisfy the query condition for any possible point
in the ASR. The LBS may be compromised, i.e., an adversary
may have complete knowledge of all queries received by the
LBS.

K - ASR

insecure
connection

 candidate
 resuts

secure
connection

 actual results location

actual
position,k

Figure 6. General Framework

V. SAFE ZONE CONSTRUCTION

A. Algorithm outlines the solution(Safe Zone)

 A min-heap is initialized with the root entry of the R-tree.
The entries are de-heaped iteratively until the heap becomes
empty. If a de-heaped entry e has maxdist(e, q) < r, then all
the objects in it are internal and we apply pruning rules 1 and

4. If the entry is pruned, we do not need to check any objects
within it for the construction of the safe zone.

Algorithm 1 Range Query (q, r)

Input: q: the query point; r: range of the query;
Description:
 initialize a min-heap H with root of the R-Tree
 while H is not empty do
 deheap an entry e
 if maxdist(e, q) < r then

 if pruned using rules 1 and 4 then
 insert all objects of e in the answer list
 continue
 else if mindist(e, q) > r) then
 If pruned using rules 2, 3 and 5, continue;
 if e is an object then
 TrimSafeZone(e,q,S) /* Algorithm 2 */
 if e is an internal object, insert in the answer list
 if e is a leaf or index node then
 for each entry c in e do
 insert c into H with key set to its minimum
distance from boundary
send guard objects and answer list to the query.

Algorithm 2 TrimSafeZone (o, q, S)

Input: o: an object o to be used for updating the safe zone;
 q: the query point; S: the list of current guard objects;
Description:

 for each guard object oi in S do

 for each intersection point vi of circles of o and oi
do
 add vi to vertices list if vi lies on the
boundary of the safe zone

 add o to the list of guard objects S
 if o is an internal object then
 remove every vertex v if dist(o, v) > r

 else if o is an external object then
 remove every vertex v if dist(o, v) < r
 remove every guard object o from S if all its related

vertices have been removed.

B. Algorithm The calculation of safe region for range query
 The purpose of this algorithm is to calculate the safe
region radius and decide the query result set. The safe region
radius r is returned for the object o under query q. The
Boolean return value of true or false indicates whether object
o is within the query result set.

SafeRegion(q, o, & r)
{
if (q is a rectangular range query) then
{
//Three circumstances exist,
//A: o.p is inside query region I
//B: o.p is inside query region II
//C: o.p is inside query region III
if (o.p is inside query region I) then

anonymizer

LBS (Location
Based Server)

Anonymous
client

Data object

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 3, No.1, February 2013

 146

{
r = distance from o.p to the closest edge of the

rectangular
query region;
return true;
}

else if (o.p is inside query region II) then
r = distance from o.p to the closest edge of the

rectangular
query region;

else // o.p is inside query region III
r = distance from o.p to the closest vertex of the

rectangular query region;
return false;
}

else if (q is a circular range query) then
{
//Two circumstances exist,
//A: object o is inside the
//circular query region
//B: object o is outside of the
//circular query region
doq= dist(o.p, q.circle.p);
//dist(a, b) represents the distance
//between point a and point b. doq is the //distance between
object o and query q.
r = ABS(doq - q.circle.r);
if (doq <= q.circle.r) then
return true;

else
return false;
}
}

C. Safe zone techniques

 Initially, the whole space is assumed to be the safe zone.
We then access each object that cannot be pruned, and use its
circle to trim the safe zone. The algorithm stops when all the
objects that cannot be pruned are accessed. The order in which
the objects are accessed is important as better access order
retrieves fewer objects that affect the safe zone. We first
present our proposed access order. Secondly, we present our
query processing algorithm followed by the algorithm to trim
the safe zone. Finally, we present an efficient technique to
update the safe zone when the query leaves it.

D. Access order

 After applying the pruning rules presented above, there
may be several objects left in the unpruned area. The order in
which these objects are accessed is important. Intuitively, the
objects that lie closer to the boundary of the range query have
a more significant effect on the shape of the safe zone and
should be accessed first.

E. Updating the safe zone when query leaves it

 When the query leaves its safe zone, it sends its current
location and current guard objects to the server. The server
updates the answer list (the list of internal objects), computes
the new safe zone and sends it to the query. A straightforward
approach is to compute the safe zone and answer list from
scratch. However, this is not only expensive but can also
cause a large amount of data to be transmitted from the server
to the query if the answer list contains a large number of
objects. In this section, we propose an effective approach to
update the safe zone and the answer list, called smart-update.

VI. EXPERIMENTS
 To evaluate the performance of our proposed approach,
we compare our approach with an optimal algorithm and a
naive algorithm. We assume that the optimal algorithm
already knows the safe zone and updates the results only when
the query leaves the safe zone. To compute the initial results,
the optimal algorithm visits the objects that lie within the
range. To update the results, the algorithm searches only the
area that may contain the new answers. We only consider the
I/O cost for the optimal algorithm (the CPU time is assumed
to be zero).

 The naive algorithm prunes every object oi such that its
circle does not intersect with the circle of any guard object.
That is, an object or rectangle can be pruned if its distance
from all guard objects is greater than 2r.

 All the experiments were conducted on Intel Xeon 2.4
GHz dual CPU with 4 GBytes memory. We used real dataset
as well as synthetic dataset. The real dataset3 contains 175,
813 points of interests in North America that corresponds to a
data universe of 5000Km×5000Km. To verify the theoretical
analysis, we created synthetic datasets consisting 50, 000 to
150, 000 points following uniform distribution within the
same data universe size. The objects are indexed by R-tree
with node size set to 2K.

 We simulated moving queries (moving cars) by using the
spatio-temporal data generator [25]. The average speed of
moving queries varies from 40 Km/hr to 120 Km/hr. All
queries are continuously monitored for 5 minutes and the
results shown correspond to the average monitoring cost for a
single query for the 5 minutes duration. All the experiment
results shown correspond to the real dataset except the results
where we show the effect of number of objects.

A. Cost comparison
 The cost of each algorithm consists of I/O cost (by
charging 2ms for each node access) and CPU cost (assumed
zero for the optimal algorithm). The naive algorithm was at
least 20 times slower than our algorithm for all settings so we
exclude it from figures to better illustrate the comparison of
our algorithm with the optimal algorithm. In Figure 7. A and
Figure 7. B, we compare the cost of our algorithm with the
cost of optimal algorithm for different ranges and different

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 3, No.1, February 2013

 147

number of objects . The performance of our algorithm is close
to the optimal algorithm. Main cost for our proposed approach
is the I/O cost which is very close to the I/O cost of the
optimal solution. This shows that the overhead of computing
the safe zone is very small compared to the cost of the range
query.

 3
 Our CPU Time 1.2 Our CPU Time

 2.5 Our I/O Time Our I/O Time
Optimal I/O Time 1 Optimal I/O Time

2 se
c)

0.8

(in

1.5

 0.6

1 0.4 Ti
m

e

 0.5 0.2
 0 0

 50 100 150 200 250 50 75 100 125 150

Range (in Km) Number of objects (in thousands)
(a) Radius (b) Number of objects

Figure 7. Efficiency

 In Figure 8, we show the expected distance for queries run
on the synthetic dataset with increasing number of objects and
increasing range of the query. It shows that the actual
expected distance is close to the expected bounds. Moreover,
the actual expected distance is from 300 meters to 1200
meters.

 1200 1800
 Expected Lower Bound Expected Lower bound

 1600 1000 Experimental Experimental

 1400 Expected Upper Bound Expected Lower Bound

m
et

er
s)

800 1200
 1000 (in

600

(i n

 800

400 600
 400 200 D

is
ta

nc
e

200

 0 0

 50 75 100 125 150 50 100 150 200 250

Number of Objects (in thousands) Range (in Km)

(a) Effect of data cardinality (b) Effect of range

 Figure 8. Expected Distance

 Figure 9 shows the average number of guard objects for
all queries and compares the theoretical bound with the actual
number of guard objects. As stated in Section V, our
theoretical upper bound is valid for the queries for which
maximum distance to the safe zone is smaller than C · mup
where C is a constant. We observed that when C is set to 2,
30% to 50% queries satisfy the constraint. We call such
queries the nominated queries.

 20

2
0

 Avg for all queries

 Avg for all queries
 Avg for nominated queries

 Avg for nominated queries

15 upper bound for nominated queries

1
5

upper bound for nominated queries

O
bj

ec
ts

ob
je

ct
s

10
1
0

of
 g

ua
rd

s

5 N
o

of

gu
ar

d

5

no

 0 0
 50 75 100 125 150 50 100 150 200 250

Number of Objects (in thousands) Range (in Km)
(a) Effect of data cardinality (b) Effect of range

Figure 9. Number of guard objects

 In Figure 9, we show the average number of guard objects
for all queries as well as the average number of guard objects

for the nominated queries. It is interesting to note that the
average number of guard objects for all queries is around 5
regardless of the experiment settings.

VII. CONCLUSION
 Our strategy does not require computation over the
terminal devices. Therefore, cost of the terminal devices is
reduced under the precondition of equal or better system
performance. Secondly, terminal devices do not need to
download the safe region information from the server which
reduces the communication cost effectively. Finally,
computation is simplified by applying circular safe regions.
Hence the server workload is reduced which improves the
system scalability. Possible future works of the research
include implementation of the strategy in an applied MOD
engine for a information system providing LBS to public
transportation, taxis and private vehicle devices or pedestrians
with hand-held mobile devices. Application of our strategy
potentially provides real-time range queries and kNN queries
to support LBS at a low cost with a high performance in
addition to system design and implementation ease and
flexibility.

REFERENCES

[1] Y. Du, D. Zhang, and T. Xia, “The Optimal Location Query”,

Proceedings of International Symposium on Spatial and Temporal
Databases, pp. 163-180, 2005.

[2] M.L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis, “Top-K Spatial

Preference Queries,” Proc. IEEE 23rd International Conference
Data Engineering (ICDE), pp. 1076-1085, 2007

[3] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E.
Hambrusch, “Query indexing and velocity constrained indexing:
Scalable techniques for continuous queries on moving objects,”
IEEE Transaction Computers, vol. 51, no. 10, pp. 1124–1140,
2002.

[4] M. F. Mokbel, X. Xiong, and W. G. Aref, “Sina: Scalable
incremental processing of continuous queries in spatio-temporal
databases,” in SIGMOD Conference, 2004, pp. 623–634.

[5] X. Xiong, M. F. Mokbel, and W. G. Aref, “Sea-cnn: Scalable
processing of continuous k-nearest neighbor queries in spatio-
temporal databases,” in ICDE, 2005, pp. 643–654.

[6] G. S. Iwerks, H. Samet, and K. P. Smith, “Continuous k-nearest
neighbour queries for continuously moving points with updates,” in
VLDB, 2003, pp. 512–523.

[7] X. Yu, K. Q. Pu, and N. Koudas, “Monitoring k-nearest neighbor
queries over moving objects,” in ICDE, 2005.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 3, No.1, February 2013

 148

[8] Hua Lu, Member, IEEE, and Man Lung Yiu, “On Computing
Farthest Dominated Locations”, IEEE Transactions on Knowledge
and Data Engineering. 23, No. 6, pp 928- 946 2011.

[9] M.A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. Wang,
“Multi-Guarded Safe Zone: An Effective Technique to Monitor
Moving Circular Range Queries”, Proceedings. IEEE 26th Int’l
Conf. Data Eng. (ICDE), pp. 189-200, 2010.

[10] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest Neighbour
Queries”, Proceedings of ACM SIGMOD International Conference
on Management of Data, pp. 71-79, 1995.

