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Abstract— Recently, these have been a great interest in the three-
dimensional WebGIS system and its applications in various 
branches such as simulation, modeling, network infrastructure 
optimization, etc. A challenge task in this kind of system is 
enhancing the speed of displaying large terrains over the Internet 
environment. Traditional approaches for this problem were 
shown to have some limitations, both in splitting methods and in 
the memory space; thus giving low performance of the three-
dimensional WebGIS system. So far, some terrain splitting 
optimization algorithms have been presented to solve these 
difficulties, such as Particle Swarm Optimization (PSO-TSA), 
Genetic Algorithm (GA-TSA), Bread Distributing Task (BDT-
TSA) and Stochastic Simulation Test (SIT-TSA). These methods 
were verified intensively, and showed the advantages over the 
traditional methods in terms of computational time and saving 
threshold. However, a systematic comparison between these 
methods has not been found yet. In this paper, we will give an 
overview of these kinds of methods, and perform an extensive 
comparison between them by numerous simulations. Some 
comments and characteristics of methods are also highlighted.  

Keywords: 3D WebGIS, Heuristic Algorithms, Stochastic 
Methods, Terrain Splitting Optimization. 

I.  INTRODUCTION 
The three-dimensional WebGIS system has been being 

considered as a useful tool to model, visualize and display all 
objects in the real world. Supported by a geographical 
coordinate system, it provides a flexible way to keep track of 
an object in a 3D terrain as well as perform some spatial 
analysis operations such as measurement, visibility, etc. This 
kind of system has been applied to various branches from Real 
Estate Information System [9], [11], [28], Tourism [10], [20], 
[26], [29], Traveling [19], Earthquake Disaster Prevention and 
Mitigation [25] to many other ones [2], [24], [27]. 

A challenge task in this kind of system that prevents it to 
deploy further in practical situations is the capability to handle 
large Digital Elevation Model (DEM) terrains [6], [18]. 
Normally, it takes some minutes to display a medium terrain. 
This number is increasing significantly when large terrains are 
processed. This may lead to the overload of the whole 
WebGIS system. In some commercial areas, such a slow, 
unstable 3D WebGIS can cause a great loss of money. 

The traditional method for this problem is using Rendering 

Engine [5] including Load, 3D Rendering and Transform 
steps. However, the limitation of this method can be 
recognized as the requirement of downloading the whole DEM 
terrain before processing [12]. Therefore, the larger the DEM 
terrain is, the longer the waiting time requests. For this reason, 
it is not used much when focusing on the speed of displaying. 
Later, some recent methods, presented by Google corporation 
– O3D [23] and the authors in [14] - JSG have elicited a new 
approach to deal with this problem. Instead of downloading 
the whole DEM terrain, they divide it into some pieces, and 
these small ones are transferred to clients one after another. 
Then, each part is constructed to display (3D Rendering) using 
the Painter’s algorithm [5] or more advanced Z-buffering [1]. 
While rendering a part, some other parts are transferred to 
clients, and the rendering step is continued until all parts are 
totally sent. Indeed, this process makes us feel that the 3D 
scene is displayed immediately. 

Nevertheless, these approaches have some limitations about 
the spatial characteristic between regions and the dividing 
time. Indeed, a new result from [12] namely SESA was 
presented. This algorithm used a pre-processing step based on 
geometric processing between polygons to arrange some 
elements into specific blocks. Thus, results can be quickly 
found from those blocks.  

However, these are still two weaknesses of this algorithm. 
Firstly, the “suitable” solution found by SESA is not optimal 
in many cases. In the other words, the saving threshold is not 
the smallest one. Secondly, SESA spends long time on finding 
solution. After each number of partitions, the generator re-
adjusts the parameters if it cannot find any possible solution. 
This makes the answer time is really long in case of no 
satisfied partition. 

Recently, some terrain splitting optimization algorithms 
have been presented to solve these difficulties, such as Bread 
Distributing Task (BDT-TSA) [13], Stochastic Simulation 
Test (SIT-TSA) [17], Particle Swarm Optimization (PSO-
TSA), Genetic Algorithm (GA-TSA) [22]. These methods 
were verified intensively, and showed the advantages over the 
traditional methods in terms of the computational time and the 
saving threshold. 

In this paper, we will make an extensive analysis of these 
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methods and perform a complete comparison between them in 
two aspects: the saving threshold and the computational time 
on the benchmark DEM terrain dataset from the Bolzano-
Bolzen province, Italy [14]. 

The rests of the paper are organized as follows. Section 2 
introduces the optimization problem. Reviews of some terrain 
splitting optimization algorithms will be presented in Section 3. 
In the two next sections, the comparisons about saving 
threshold and computational time will be shown, respectively. 
Section 6 will summarize the findings from two previous 
sections and generate some fuzzy rules from them. Finally, we 
will make conclusions and future works in the last section. 

II. THE OPTIMIZATION PROBLEM 
Our problem can be understood as follows: We have to split 

a 3D DEM terrain following by some polygons in 2D 
Polygonal Vector Data (2PVD) and the number of processors 
k  in the system. 

min
1
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DEMS  is the area of original 3D DEM terrain. ε  is a given 
error. The parameter α  is called the saving threshold of 
memory space in each processor. Being mentioned in the 
previous section, it should be as minimal as possible to reduce 
the memory space in each processor. 

III. SOME TERRAIN SPLITTING OPTIMIZATION ALGORITHMS 
Nguyen et al. (2011) [22] have shown two algorithms to 

solve the original problem. The first one based on Genetic 
Algorithm [4], [7] namely GA-TSA employs some ideas of 
natural evolution, such as inheritance, mutation, selection, and 
crossover for finding the best saving threshold in a search 
area. In this algorithm, an individual is a collection of indexes 
of all polygons in 2PVD that represent for all blocks in a 
current solution. Then, through a fitness function, all 
individuals are sorted in the ascending order, and half of them 
are selected to reproduce a new generation by the mean of 
Cross Over and Mutation operations. After pre-defined 
maximal iteration steps, the best generation is found, and the 
saving threshold can be extracted from it. However, in some 
cases, the last solution sometimes does not give a possible 
saving threshold due to bad initialization. Besides, the 
difference of areas between blocks in the last solution may be 
larger than ε . For these reasons, some modifications should 
be performed, either selecting another initial population or 

increasing parameter ε . Anyway, this algorithm still 
guarantees obtaining better results than SESA does. 

The second algorithm in the literature [22] started with an 
idea of Swarm Optimization, which is considered to be the 
most suitable strategy among all of Heuristic Optimization. 
The chosen algorithm to develop is Particle Swarm 
Optimization (PSO) which was invented by Dr. Kennedy in 
1995 [8]. Indeed, the algorithm was named PSO-TSA. The 
basic idea of this algorithm lies on the Seed Procedure. 
Basically, k  seeds are evenly distributed in the space. Each 
seed represents for a number of polygons in 2PVD. Then, the 
authors calculate and check the constraints from A1 to A3. If 
these criteria are not met, PSO algorithm is used to generate a 
new population until the stopping condition is reached. In the 
last iteration, the particle holding gBest value will be outputted 
if it satisfies the constraints. Nevertheless, similar to GA-TSA, 
it still remains the same disadvantages. Moreover, both 
algorithms do not guarantee success in all cases. 

The authors in [13] have presented another solution for the 
considered problem. They employed some basic principles of 
Particle Swarm Optimization and Bread-Distributing scenario. 
In essence, the new algorithm is a modification of the PSO-
TSA because it uses all phases of Particle Swarm 
Optimization from swarm initialization, searching for local 
and global best particles to calculating new solutions from the 
previous one. The only change in comparison with PSO-TSA 
is the using of an idea: Bread Distributing Task. Indeed, the 
algorithm was named as BDT-TSA. Initially, all polygons in 
2PVD are assigned to k  blocks with k  is the number of 
processors in the system by the mean of R - SESA algorithm 
[15], [16]. Then, the fitness’s value of each block is 
calculated; thus updates two best values: pbest and gbest. This 
process is similar to the main PSO algorithm. However, in the 
next step, only the “worst” and the “best” block are changed 
and affected together. This means that a polygon in the 
“worst” block will be transferred to the “best” one. This 
polygon is randomly chosen through pbest and gbest values. 
The algorithm repeats this process until the maximal iteration 
step is reached. 

These are some points that make BDT-TSA be different 
with PSO-TSA. Firstly, a particle is not a solution. Instead, a 
solution is a collection of particles. Secondly, the velocities 
and positions of particles are not defined. The only thing that 
makes a solution change is the index of element in the “worst” 
particle, which is calculated through pbest and gbest values. In 
the experiments, BDT-TSA was shown to be better than SESA 
in both the saving threshold and the computational time. 

The last optimization technique for the problem (1) – (2) 
has been found from the literature [17]. In that paper, the 
authors proposed a new algorithm named Stochastic 
sImulation Test based Terrain Splitting Algorithm (SIT-TSA). 
In essence, it is a stochastic and agent - based approach that 
acts following by a basic principle: “It is supposed to be no 
satisfied solution with probability p−1  after a series of 
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failed stochastic simulation tests on various possibilities 
derived from the original sample”. In the other word, this 
principle behaves as a similar way to Monte Carlo method - a 
class of computational algorithms that rely on repeated 
random sampling to compute their results [3], [21]. The SIT-
TSA acts like the scenario above. An agent is randomly 
initiated at a polygon. By using a local search method, an 
ordered list of polygons in 2PVD is established. Then, by 
multiple tests with random “sticks” dividing this list into k  
blocks, a candidate list of this agent is set up. This process is 
repeatedly performed for other agents. Finally, the optimal 
solution with minimal saving threshold parameters will be 
chosen from all the candidate lists. In addition, parallel 
computing is used as an important aid for the reduction of total 
computing time due to independent works between agents. 

The SIT-TSA method converges to the global solution 
instead of local one due to the best solution selection process 
among all agents. Moreover, it can answer quickly whether a 
solution may exist for a given parameters ε  or not. This 
method was shown to obtain more successful results than 
PSO-TSA. 

All these optimization algorithms were shown to be suitable 
for the considered problem. Moreover, they outperform the 
traditional methods. However, there is not a best method 
among them. Each method has own advantages and situations. 
Thus, our mission is to find which algorithm we should choose 
for a specific input. 

In what follows, we will make the comparisons between 
them in two aspects: the saving threshold and the 
computational time. 

IV. THE COMPARISON OF SAVING THRESHOLD 

A. The statistics by the number of polygons 
In the experiment, we have run four algorithms above 

following by the number of polygons and the number of 
processors in two kinds of DEM terrain: medium (sizes: 4039 
x 6529 ~ 24 million points) and large (sizes: 8024 x 9621 ~ 77 
million points). The outputs are the saving thresholds and the 
computational times. 

We compare the saving thresholds of four algorithms for a 
specific number of polygons and processors, and find the 
smallest one. Then, we increase the number of cases for the 
algorithm that has the smallest value of saving threshold by 
one. The statistics are grouped following by the number of 
polygons. Results are illustrated in Fig. 1. 

From this figure, we may see that SIT-TSA obtains better 
results than other algorithms in most cases. For example, when 
the number of polygons is 5000, the numbers of cases 
generated by GA-TSA, PSO-TSA, BDT-TSA and SIT-TSA 
are 1, 3, 5 and 7, respectively. If we consider the total number 
of cases, for a given number of polygon is 100 percents, the 
percent values of all algorithms in the example above will be 
6.25%, 18.75%, 31.25% and 43.75%. This means that if the 
number of polygons in the input data is 5000, and the SIT-

TSA algorithm is chosen, the possibility for the saving 
threshold of this algorithm to be the smallest one is nearly 
44%. 

 
The percent values of SIT-TSA in cases of 20, 50, 200, 500, 

1000 and 2000 polygons are 42.85%, 37.5%, 27.78%, 27.78%, 
43.75% and 38.89%, respectively. Thus, we should choose the 
SIT-TSA algorithm if the number of polygons is large (over 
1000) or small (below 50). In case the number of polygons is 
medium, PSO-TSA should be chosen because it contributes 
the largest percent values among all, i.e. 33.34% (500 
polygons). 

Through this figure, we can recognize another result that 
BDT-TSA is better than PSO-TSA and GA-TSA. Except 500 
polygons, the number of cases generated by BDT-TSA is 
higher than the ones of PSO-TSA. Similarly, except 50 
polygons, PSO-TSA creates more cases than GA-TSA does. 
Therefore, we have an order of algorithms to be chosen, that is 
SIT-TSA, BDT-TSA, PSO-TSA and GA-TSA. This order 
helps us to choose the substitute for the main algorithm 
mentioned above. For example, when the number of polygons 
is large or small, if we do not choose SIT-TSA, BDT-TSA is 
selected as the substitute. When the number of polygons is 
medium, SIT-TSA is chosen as the substitute for the PSO-
TSA. 

B. The statistics by the number of processors 
This subsection performs the same statistics with the 

previous one, but following by the number of processors. 
Results are depicted in Fig. 2. 

This figure shows that we should choose the SIT-TSA 
algorithm if the numbers of processors are medium and small 
(from 2 to 7). The numbers of cases for SIT-TSA with 2, 3, 4 
processors are 10, 11, 8, respectively. The equivalent percent 
values are 40%, 45.8% and 47.1%. In this situation, the order 
of algorithms to be chosen is SIT-TSA, BDT-TSA, PSO-TSA 
and GA-TSA. 

When the number of processors is large (from 8 to 16), BDT 
- TSA should be chosen as it contributes more cases than other 
algorithms. For example, when we use 16 processors, the 

Figure 1. The statistics of saving threshold by the number of polygons 
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numbers of cases generated by GA-TSA, PSO-TSA, BDT-
TSA and SIT-TSA are 2, 1, 10 and 6, respectively. The 
equivalent percent values are 10.53%, 5.26%, 52.63% and 
31.58%. The order of algorithms is BDT-TSA, PSO-TSA, 
SIT-TSA and GA-TSA. 

 
C. Average saving threshold by number of polygons 

 
In Fig. 3, we compare the average saving thresholds of four 

algorithms following by the number of polygons. These values 
are calculated on the medium DEM terrain. Fig. 3 shows that 
there is little difference between four algorithms when the 
number of polygons is below 500. The maximal differences 
between the algorithms in cases of 20, 50, 200 and 500 
polygons are 0.005, 0.004, 0.026 and 0.099, respectively. 
However, when the number of polygons is large, the 
difference is getting obvious. The maximal differences 
between the algorithms in cases of 1000, 2000 and 5000 
polygons are 13.1, 11.04 and 8.16, respectively. 

The SIT-TSA algorithm obtains the smallest average saving 
thresholds among all other ones. For example, when the 
number of polygons is 1000, the threshold values of GA-TSA, 
PSO-TSA, BDT-TSA and SIT-TSA are 15.1, 3.14, 2.13 and 

2.04, respectively. From 500 polygons afterward, we can 
clearly see that the line of GA - TSA is higher than the ones of 
PSO-TSA, BDT-TSA and SIT-TSA. Thus, the order of all 
algorithms in Fig. 3 should be SIT-TSA, BDT-TSA, PSO-
TSA and GA-TSA. 

 
In Fig. 4, we also calculate the average saving thresholds of 

four algorithms similar to Fig. 3, but on the large DEM terrain. 
Through this figure, GA-TSA is shown to obtain higher saving 
threshold values than other algorithms because its line is quite 
far from the remains. Below 500 polygons, the three left lines 
are nearly the same. The maximal differences between these 
lines in cases of 20, 50, 200 and 500 polygons are 0.000923, 
0.001276, 0.000079 and 0.000179. For the range [500, 5000] 
polygons, the line of BDT-TSA is higher than the rests. Thus, 
BDT-TSA is suitable for the input whose numbers of polygons 
are medium and small, and the DEM terrain is large. 

Although the two lines of PSO-TSA and SIT-TSA are nearly 
the same for all cases, PSO-TSA still obtains smaller values of 
saving threshold than SIT-TSA does. For example, the 
difference between these lines in case of 20 polygons is 
0.000008. More polygons are added, more obvious the 
difference is. When the number of polygons is 5000, the 
difference is increased to 0.001543. Thus, the order of all 
algorithms in this figure is PSO-TSA, SIT-TSA, BDT-TSA 
and GA-TSA. 

D. Average saving threshold by number of processors 
Now, we perform the same calculations as in the previous 

subsection, but for the number of processors. Results are 
shown in Fig. 5 and Fig. 6. 

In Fig. 5, the line of GA-TSA is higher than other ones. In 
the range [2, 12] processors, SIT-TSA is better than BDT-
TSA, and BDT-TSA is better than PSO-TSA. The threshold 
value of BDT-TSA is approximately 2.11 times higher than 
the one of SIT-TSA. These numbers in cases of PSO-TSA and 
GA-TSA are 6.73 and 48.1, respectively. When the number of 
processors is 16, the differences between SIT-TSA, BDT-TSA 
and PSO-TSA are quite small (~ 0.02). Thus, we should 
choose the number of processors in the range above to get the 

Figure 4.  The average saving thresholds on the large DEM terrain 

Figure 3.  The average saving thresholds on the medium DEM terrain 

Figure 2. The statistics of saving threshold by the number of processors 
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distinct results of all algorithms. The order of all algorithms in 
this situation is SIT-TSA, BDT-TSA, PSO-TSA and GA-TSA. 

Fig. 6 shows a different result with the figure above. Except 
GA-TSA which produces the worst result in comparison with 
the rests, the other algorithms always create the values of 
saving threshold below 0.051. In the range [2, 4] processors, 
the line of BDT-TSA is higher than the ones of PSO-TSA and 
SIT-TSA. The maximal difference between BDT-TSA and 
these algorithms is 0.05 when the number of processors is two. 
The difference is getting smaller when more processors are 
added. The saving thresholds of three algorithms are 
approximately equal in the range (4, 8] processors. 

The last range (8, 16] shows the saving threshold of BDT-
TSA is smaller than the ones of PSO-TSA and SIT-TSA. 
Thus, we should choose the BDT-TSA if the number of 
processors is large. When the numbers of processors are 
medium and small, PSO-TSA and SIT-TSA are selected, 
respectively. 

 

 
E. Advanced statistics of the saving threshold 

In Fig. 7, we summarize the statistics and draw the 
histograms of all algorithms. Results show that both the 

minimal and maximal values of SIT-TSA, BDT-TSA are 
smaller than the ones of PSO-TSA and GA-TSA, respectively. 
In SIT-TSA, 25 percents of the saving thresholds are smaller 
than 0.000321. The numbers in cases of BDT-TSA, PSO-TSA 
and GA-TSA are 0.0003035, 0.000060 and 0.027977, 
respectively. We can recognize that SIT-TSA is not better than 
PSO-TSA and BDT-TSA in this situation. However, the 
median value of SIT-TSA points out that 50 percents of the 
saving thresholds are smaller than 0.003707. This number is 
smaller than PSO-TSA (0.008759), BDT-TSA (0.0187035) 
and GA-TSA (0.163955). 

 

 
75 percents of saving thresholds state that PSO-TSA is the 

best method with value 0.031135 in comparison with SIT-
TSA (0.055907), BDT-TSA (0.1049830) and GA-TSA 
(0.393762). However, 25 percents of left saving thresholds of 
PSO-TSA are larger values than SIT-TSA (max = 4.431103) 
and BDT-TSA (max = 4.3754530). Indeed, this algorithm is 
somehow not better than SIT-TSA and BDT-TSA. The mean 
values clearly show the order of algorithms to be chosen: SIT-
TSA, BDT-TSA, PSO-TSA and GA-TSA. 

We also draw the normal Q-Q plots of all algorithms. From 
Fig. 8, the saving threshold values of all algorithms do not 
follow the standard distribution. 

Figure 8.  Normal Q-Q Plots of all algorithms 

 
Figure 7.  Histograms and summary statistics of all algorithms 

Figure 6.  The average saving thresholds on the large DEM terrain 

Figure 5.  The average saving thresholds on the medium DEM terrain 



IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555  
Vol. 2, No. 1, 2012 

 135

F. The saving threshold prediction 
In this subsection, we will construct the models to predict 

the saving threshold values of all algorithms following by the 
size of DEM terrain (DEM), the number of polygons in the 
terrain (Pol) and the number of processors in the system 
(Proc). Fig. 9 shows the distributions of the saving thresholds 
of all algorithms. Obviously, the threshold values in the first 
43 tests are much higher than the remains. In fact, they are 
conducted from the medium DEM terrain. Indeed, small DEM 
terrains often create large values of saving threshold than large 
DEMs do. 

 
In what follow, we use the linear regression toolbox in the 

software package R1 to construct the prediction models for all 
algorithms. 

SIT – TSA = 0.8290003 - 0.0001839 * DEM + 
0.0659394 * Proc + 0.0001262 * Pol 

, (3) 

PSO – TSA = 1.6900059  - 0.00028 * DEM + 
0.045665 * Proc + 0.000181 * Pol 

, (4) 

GA – TSA = 9.313887 - 0.0013 * DEM + 0.0000002 * 
Proc + 0.001042 * Pol 

, (5) 

BDT – TSA = 0.9883551 - 0.0002 * DEM + 0.061936 
* Proc + 0.000141 * Pol 

. (6) 

From these models, we can calculate the predictive saving 
threshold values for all algorithms following by a certain 
input. Then, we can choose the algorithm that produces the 
smallest value among all. The experimental results also show 
that the Akaike Information Criterion (AIC) values of SIT-
TSA, PSO-TSA, GA-TSA and BDT-TSA are 3.3, 22.25, 
259.4 and 9.58, respectively. They reconfirm the order of 
algorithms to be chosen, that is SIT-TSA, BDT-TSA, PSO-
TSA and GA-TSA. 

V. THE COMPARISON OF COMPUTATIONAL TIME 

A. Average computational time by the number of polygons 
In the previous section, we have considered the saving 

threshold of all algorithms. In addition to this criterion, the 
computational time should be examined carefully. An 
algorithm is not effective if it runs too long; although it can 

produce the smallest value of saving threshold. Therefore, in 
this section, we have also performed the same experiments 
with Section 4, but focused intensively on the computational 
time. 

In Fig. 10, we investigate the average computational time of 
all algorithms following by the number of polygons on the 
medium DEM terrain. Results show that SIT-TSA is the most 
effective algorithm when the numbers of polygons are small 
and medium (below 200). In these cases, GA-TSA runs 
approximately 35.4 times longer than SIT-TSA on average. 
These numbers in PSO-TSA, BDT-TSA are 279 and 539 
times, respectively. However, these differences are getting 
smaller when the number of polygons increases, i.e. 1.03, 14 
and 4.14 times longer than SIT-TSA in cases of GA-TSA, 
PSO-TSA and BDT-TSA, respectively. The order of 
algorithms in this situation is SIT-TSA, GA-TSA, PSO-TSA 
and BDT-TSA. 

 

 
When the number of polygons is large, GA-TSA is shown to 

be the fastest algorithm among all. The computational times of 
PSO-TSA, BDT-TSA and SIT-TSA are 15.3, 1.72 and 37.3 
times longer than GA-TSA, respectively. When the number of 
polygons increases, these numbers are larger as the amplitudes 

1 The software package R is available at: http://cran.r-project.org

 
Figure 11.  The average computational time on the large DEM terrain 

 
Figure 10.  The average computational time on the medium DEM terrain 

 
Figure 9.  The distributions of the saving thresholds of all algorithms 
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of lines are expanded. Thus, in this situation, the order of 
algorithms is GA-TSA, BDT-TSA, PSO-TSA and SIT-TSA. 

In GA-TSA, the incremental level between two numbers of 
polygons is 2.19 times. These numbers in cases of PSO-TSA, 
BDT-TSA and SIT-TSA are 2.49, 1.65 and 17.2, respectively. 
Indeed, they explain why the SIT-TSA turns from the fastest 
algorithm to the slowest one as shown in above. 

In Fig. 11, we calculate the average computational time on 
the large DEM terrain. The results are similar to the ones on 
the medium DEM. For the small and medium number of 
polygons, SIT-TSA still predominates over the rests. The 
computational times of GA-TSA, PSO-TSA and BDT-TSA 
are 41.9, 367 and 764 times longer than the one of SIT-TSA, 
respectively. These numbers are longer than the equivalent 
results in Fig. 10 about 1.18, 1.31 and 1.41 times. Thus, this 
fact explains why GA-TSA tends to the most stable algorithm 
among all because it keeps a little change of the computational 
time when the sizes of DEM terrain are increased. 

For the large number of polygons, PSO-TSA, BDT-TSA and 
SIT-TSA run 16.1, 1.51, 72.1 times longer than GA-TSA 
does, respectively. The incremental levels between two 
numbers of polygons in cases of GA-TSA, PSO-TSA, BDT-
TSA and SIT-TSA are 2.22, 2.57, 1.56 and 21.5, respectively. 
The order of algorithms is kept intact as in the same situation 
in Fig. 10. 

B. Average computational time by the number of processors 
This subsection investigates the average computational times 

of all algorithms following by the number of processors. 
Results are depicted in Fig. 12 and Fig. 13. 

 
Fig. 12 shows that GA-TSA is the fastest algorithm in all 

numbers of polygons. The computational times of PSO-TSA, 
BDT-TSA and SIT-TSA are 14.7, 1.97 and 43.7 times longer 
than GA-TSA. The order of algorithms in this situation is GA-
TSA, BDT-TSA, PSO-TSA and SIT-TSA. 

Fig. 12 also points out that the processing times per 
processor of GA-TSA, PSO-TSA, BDT-TSA and SIT-TSA 
are 4.68, 45.9, 11.1 and 209 seconds, respectively. As such, 
more processors are added, more effective the GA-TSA 
shows. Besides, these numbers help us to give a predictive 

value of computational time when processing a certain number 
of processors. 

In Fig. 13, the computational times of PSO-TSA, BDT-TSA 
and SIT-TSA are 15.9, 1.63 and 137 times longer than GA-
TSA. The processing times per processor of GA-TSA, PSO-
TSA, BDT-TSA and SIT-TSA are 4.8, 49.3, 8.8 and 962 
seconds, respectively. Except SIT-TSA, these numbers are 
approximately equal to the equivalent results in Fig. 12. When 
the sizes of the DEM terrain increase, the processing time per 
processor of SIT-TSA increases drastically. Thus, we should 
not choose SIT-TSA if the number of processors is large. The 
order of all algorithms is kept intact in this situation. 

 
C. The computational time prediction 

In Fig. 14, we study the distribution of the computational 
times of all algorithms. From this figure, we can easily 
recognize that the times are small in the first 43 tests. For the 
remains, the computational times, especially SIT-TSA, 
increase remarkably. 

 
We also use the linear regression toolbox in the software 

package R to build the predictive models of computational 
times for all algorithms. 
SIT – TSA = -2666.8467 + 0.5031 * DEM - 156.8086 

* Proc + 2.1872 * Pol 
, (7) 

PSO – TSA = -701.16554  + 0.09586 * DEM + , (8) 

 
Figure 14.  The distributions of the computational time of all algorithms 

  

 
Figure 13.  The average computational time on the large DEM terrain 

 
Figure 12.  The average computational time on the medium DEM terrain 
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16.54679 * Proc + 0.27127 * Pol 
GA – TSA = -2.8628398 + 0.000381 * DEM + 

0.1578227 * Proc + 0.016741 * Pol 
, (9) 

BDT – TSA = 8.14011 + 0.000001 * DEM + 0.000001 
* Proc + 0.02461 * Pol 

.(10) 

The AIC values of these algorithms are 1409.6, 965.41, 
117.1 and 686.7, respectively. They re-confirm that the order 
of algorithms to be chosen for the sake of computational time 
is GA-TSA, BDT-TSA, PSO-TSA and SIT-TSA. 

VI. FUZZY RULES GENERATION 
Through the evaluations of the saving threshold and the 

computational time, we have extracted the fuzzy rules for 
these criteria. Results are described in Table 1 and Table 2 
(Appendix). These rules can help us to determine the suitable 
algorithm for a given data input. For example, the following 
rule specifies a list of algorithms that optimize the saving 
threshold, 
If “DEM is large” and “The number of processors is 

medium” and “The number of polygons is small” then 
“the order of algorithms to be chosen is PSO - TSA, 

SIT - TSA, BDT - TSA and GA - TSA” 

.(11) 

If we want to focus on the computational time criterion, the 
rule in (11) is replaced by 
If “DEM is large” and “The number of processors is 

medium” and “The number of polygons is small” then 
“the order of algorithms to be chosen is SIT - TSA, GA 

- TSA, PSO - TSA and BDT - TSA” 

.(12) 

If we want to calculate the predictive values of these criteria 
for all algorithms in the list, the equations from (3) to (10) can 
be used.  

VII. CONCLUSIONS 
This paper aimed to introduce some new results of Terrain 

Splitting Optimization problem, which is considered as a 
promising topic in Geographic Information Systems. We 
presented their mechanisms, advantages as well as limitations. 
Besides, we also examined the characteristics of four best 
current methods following by two criteria: the saving 
threshold and the computational time. The comparisons 
between them were made completely and summarized through 
the fuzzy rules. Thus, these highlights could help us to choose 
the appropriate algorithm for a given data input. 

Future works will concern some methods to query 
information on three-dimensional terrains as well as exploit 
attribute information. 

APPENDIX 

TABLE I.  FUZZY RULES OF THE SAVING THRESHOLD 
No.  DEM  Processors  Polygons  The order of 

algorithms 

1  Medium  Small  Small  SIT ‐ TSA, BDT ‐ TSA, 
PSO ‐ TSA and GA ‐ 

TSA. 

2  Medium  Small  Medium  PSO ‐ TSA, SIT ‐ TSA, 
BDT ‐ TSA and GA ‐ TSA 

3  Medium  Small  Large  SIT ‐ TSA, BDT ‐ TSA, 
PSO ‐ TSA and GA ‐ 

TSA. 
4  Medium  Medium  Small  SIT ‐ TSA, BDT ‐ TSA, 

PSO ‐ TSA and GA ‐ 
TSA. 

5  Medium  Medium  Medium  PSO ‐ TSA, SIT ‐ TSA, 
BDT ‐ TSA and GA ‐ TSA 

6  Medium  Medium  Large  SIT ‐ TSA, BDT ‐ TSA, 
PSO ‐ TSA and GA ‐ 

TSA. 
7  Medium  Large  Small  BDT ‐ TSA, PSO ‐ TSA, 

SIT ‐ TSA and GA ‐ TSA. 

8  Medium  Large  Medium  PSO ‐ TSA, SIT ‐ TSA, 
BDT ‐ TSA and GA ‐ TSA 

9  Medium  Large  Large  BDT ‐ TSA, PSO ‐ TSA, 
SIT ‐ TSA and GA ‐ TSA. 

10  Large  Small  Small  SIT ‐ TSA, BDT ‐ TSA, 
PSO ‐ TSA and GA ‐ 

TSA. 
11  Large  Small  Medium  SIT ‐ TSA, BDT ‐ TSA, 

PSO ‐ TSA and GA ‐ 
TSA. 

12  Large  Small  Large  SIT ‐ TSA, BDT ‐ TSA, 
PSO ‐ TSA and GA ‐ 

TSA. 
13  Large  Medium  Small  PSO ‐ TSA, SIT ‐ TSA, 

BDT ‐ TSA and GA ‐ TSA 

14  Large  Medium  Medium  PSO ‐ TSA, SIT ‐ TSA, 
BDT ‐ TSA and GA ‐ TSA 

15  Large  Medium  Large  PSO ‐ TSA, SIT ‐ TSA, 
BDT ‐ TSA and GA ‐ TSA 

16  Large  Large  Small  BDT ‐ TSA, PSO ‐ TSA, 
SIT ‐ TSA and GA ‐ TSA 

17  Large  Large  Medium  BDT ‐ TSA, PSO ‐ TSA, 
SIT ‐ TSA and GA ‐ TSA 

18  Large  Large  Large  BDT ‐ TSA, PSO ‐ TSA, 
SIT ‐ TSA and GA ‐ TSA 

 

TABLE II.  FUZZY RULES OF THE COMPUTATIONAL TIME 
No.  DEM  Processors  Polygons  The order of 

algorithms 
1  Medium  Small  Small  SIT ‐ TSA, GA ‐ TSA, 

PSO ‐ TSA and BDT ‐ 
TSA 

2  Medium  Small  Medium  SIT ‐ TSA, GA ‐ TSA, 
PSO ‐ TSA and BDT ‐ 

TSA 
3  Medium  Small  Large  GA ‐ TSA, BDT ‐ TSA, 

PSO ‐ TSA and SIT ‐ 
TSA. 

4  Medium  Medium  Small  SIT ‐ TSA, GA ‐ TSA, 
PSO ‐ TSA and BDT ‐ 

TSA 
5  Medium  Medium  Medium  SIT ‐ TSA, GA ‐ TSA, 

PSO ‐ TSA and BDT ‐ 
TSA 

6  Medium  Medium  Large  GA ‐ TSA, BDT ‐ TSA, 
PSO ‐ TSA and SIT ‐ 

TSA. 
7  Medium  Large  Small  SIT ‐ TSA, GA ‐ TSA, 

PSO ‐ TSA and BDT ‐ 
TSA 

8  Medium  Large  Medium  SIT ‐ TSA, GA ‐ TSA, 
PSO ‐ TSA and BDT ‐ 

TSA 
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9  Medium  Large  Large  GA ‐ TSA, BDT ‐ TSA, 
PSO ‐ TSA and SIT ‐ 

TSA. 
10  Large  Small  Small  SIT ‐ TSA, GA ‐ TSA, 

PSO ‐ TSA and BDT ‐ 
TSA 

11  Large  Small  Medium  SIT ‐ TSA, GA ‐ TSA, 
PSO ‐ TSA and BDT ‐ 

TSA 
12  Large  Small  Large  GA ‐ TSA, BDT ‐ TSA, 

PSO ‐ TSA and SIT ‐ 
TSA. 

13  Large  Medium  Small  SIT ‐ TSA, GA ‐ TSA, 
PSO ‐ TSA and BDT ‐ 

TSA 
14  Large  Medium  Medium  SIT ‐ TSA, GA ‐ TSA, 

PSO ‐ TSA and BDT ‐ 
TSA 

15  Large  Medium  Large  GA ‐ TSA, BDT ‐ TSA, 
PSO ‐ TSA and SIT ‐ 

TSA. 
16  Large  Large  Small  SIT ‐ TSA, GA ‐ TSA, 

PSO ‐ TSA and BDT ‐ 
TSA 

17  Large  Large  Medium  SIT ‐ TSA, GA ‐ TSA, 
PSO ‐ TSA and BDT ‐ 

TSA 
18  Large  Large  Large  GA ‐ TSA, BDT ‐ TSA, 

PSO ‐ TSA and SIT ‐ 
TSA. 
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