
IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No. 1, 2012

 130

A Complete Review about
Terrain Splitting Optimization

Le Hoang Son
Center for High Performance Computing

Vietnam National University, University of Science
334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam

Abstract— Recently, these have been a great interest in the three-
dimensional WebGIS system and its applications in various
branches such as simulation, modeling, network infrastructure
optimization, etc. A challenge task in this kind of system is
enhancing the speed of displaying large terrains over the Internet
environment. Traditional approaches for this problem were
shown to have some limitations, both in splitting methods and in
the memory space; thus giving low performance of the three-
dimensional WebGIS system. So far, some terrain splitting
optimization algorithms have been presented to solve these
difficulties, such as Particle Swarm Optimization (PSO-TSA),
Genetic Algorithm (GA-TSA), Bread Distributing Task (BDT-
TSA) and Stochastic Simulation Test (SIT-TSA). These methods
were verified intensively, and showed the advantages over the
traditional methods in terms of computational time and saving
threshold. However, a systematic comparison between these
methods has not been found yet. In this paper, we will give an
overview of these kinds of methods, and perform an extensive
comparison between them by numerous simulations. Some
comments and characteristics of methods are also highlighted.

Keywords: 3D WebGIS, Heuristic Algorithms, Stochastic
Methods, Terrain Splitting Optimization.

I. INTRODUCTION
The three-dimensional WebGIS system has been being

considered as a useful tool to model, visualize and display all
objects in the real world. Supported by a geographical
coordinate system, it provides a flexible way to keep track of
an object in a 3D terrain as well as perform some spatial
analysis operations such as measurement, visibility, etc. This
kind of system has been applied to various branches from Real
Estate Information System [9], [11], [28], Tourism [10], [20],
[26], [29], Traveling [19], Earthquake Disaster Prevention and
Mitigation [25] to many other ones [2], [24], [27].

A challenge task in this kind of system that prevents it to
deploy further in practical situations is the capability to handle
large Digital Elevation Model (DEM) terrains [6], [18].
Normally, it takes some minutes to display a medium terrain.
This number is increasing significantly when large terrains are
processed. This may lead to the overload of the whole
WebGIS system. In some commercial areas, such a slow,
unstable 3D WebGIS can cause a great loss of money.

The traditional method for this problem is using Rendering

Engine [5] including Load, 3D Rendering and Transform
steps. However, the limitation of this method can be
recognized as the requirement of downloading the whole DEM
terrain before processing [12]. Therefore, the larger the DEM
terrain is, the longer the waiting time requests. For this reason,
it is not used much when focusing on the speed of displaying.
Later, some recent methods, presented by Google corporation
– O3D [23] and the authors in [14] - JSG have elicited a new
approach to deal with this problem. Instead of downloading
the whole DEM terrain, they divide it into some pieces, and
these small ones are transferred to clients one after another.
Then, each part is constructed to display (3D Rendering) using
the Painter’s algorithm [5] or more advanced Z-buffering [1].
While rendering a part, some other parts are transferred to
clients, and the rendering step is continued until all parts are
totally sent. Indeed, this process makes us feel that the 3D
scene is displayed immediately.

Nevertheless, these approaches have some limitations about
the spatial characteristic between regions and the dividing
time. Indeed, a new result from [12] namely SESA was
presented. This algorithm used a pre-processing step based on
geometric processing between polygons to arrange some
elements into specific blocks. Thus, results can be quickly
found from those blocks.

However, these are still two weaknesses of this algorithm.
Firstly, the “suitable” solution found by SESA is not optimal
in many cases. In the other words, the saving threshold is not
the smallest one. Secondly, SESA spends long time on finding
solution. After each number of partitions, the generator re-
adjusts the parameters if it cannot find any possible solution.
This makes the answer time is really long in case of no
satisfied partition.

Recently, some terrain splitting optimization algorithms
have been presented to solve these difficulties, such as Bread
Distributing Task (BDT-TSA) [13], Stochastic Simulation
Test (SIT-TSA) [17], Particle Swarm Optimization (PSO-
TSA), Genetic Algorithm (GA-TSA) [22]. These methods
were verified intensively, and showed the advantages over the
traditional methods in terms of the computational time and the
saving threshold.

In this paper, we will make an extensive analysis of these

This work was supported by Vietnam National University, Hanoi
[QGTĐ.11.01].

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No. 1, 2012

 131

methods and perform a complete comparison between them in
two aspects: the saving threshold and the computational time
on the benchmark DEM terrain dataset from the Bolzano-
Bolzen province, Italy [14].

The rests of the paper are organized as follows. Section 2
introduces the optimization problem. Reviews of some terrain
splitting optimization algorithms will be presented in Section 3.
In the two next sections, the comparisons about saving
threshold and computational time will be shown, respectively.
Section 6 will summarize the findings from two previous
sections and generate some fuzzy rules from them. Finally, we
will make conclusions and future works in the last section.

II. THE OPTIMIZATION PROBLEM
Our problem can be understood as follows: We have to split

a 3D DEM terrain following by some polygons in 2D
Polygonal Vector Data (2PVD) and the number of processors
k in the system.

min
1

1 →=∑
=

k

i
iSPJ

, (1)

Where iSP , ki ,1= are the areas of the small DEM

terrains in processor i . Some constraints are:

⎪
⎪
⎩

⎪⎪
⎨

⎧

≠==

×≤−

×≤

jikjki

SSPSP

SSP

DEMji

DEMi

;,1;,1

ε

α

. (2)

DEMS is the area of original 3D DEM terrain. ε is a given
error. The parameter α is called the saving threshold of
memory space in each processor. Being mentioned in the
previous section, it should be as minimal as possible to reduce
the memory space in each processor.

III. SOME TERRAIN SPLITTING OPTIMIZATION ALGORITHMS
Nguyen et al. (2011) [22] have shown two algorithms to

solve the original problem. The first one based on Genetic
Algorithm [4], [7] namely GA-TSA employs some ideas of
natural evolution, such as inheritance, mutation, selection, and
crossover for finding the best saving threshold in a search
area. In this algorithm, an individual is a collection of indexes
of all polygons in 2PVD that represent for all blocks in a
current solution. Then, through a fitness function, all
individuals are sorted in the ascending order, and half of them
are selected to reproduce a new generation by the mean of
Cross Over and Mutation operations. After pre-defined
maximal iteration steps, the best generation is found, and the
saving threshold can be extracted from it. However, in some
cases, the last solution sometimes does not give a possible
saving threshold due to bad initialization. Besides, the
difference of areas between blocks in the last solution may be
larger than ε . For these reasons, some modifications should
be performed, either selecting another initial population or

increasing parameter ε . Anyway, this algorithm still
guarantees obtaining better results than SESA does.

The second algorithm in the literature [22] started with an
idea of Swarm Optimization, which is considered to be the
most suitable strategy among all of Heuristic Optimization.
The chosen algorithm to develop is Particle Swarm
Optimization (PSO) which was invented by Dr. Kennedy in
1995 [8]. Indeed, the algorithm was named PSO-TSA. The
basic idea of this algorithm lies on the Seed Procedure.
Basically, k seeds are evenly distributed in the space. Each
seed represents for a number of polygons in 2PVD. Then, the
authors calculate and check the constraints from A1 to A3. If
these criteria are not met, PSO algorithm is used to generate a
new population until the stopping condition is reached. In the
last iteration, the particle holding gBest value will be outputted
if it satisfies the constraints. Nevertheless, similar to GA-TSA,
it still remains the same disadvantages. Moreover, both
algorithms do not guarantee success in all cases.

The authors in [13] have presented another solution for the
considered problem. They employed some basic principles of
Particle Swarm Optimization and Bread-Distributing scenario.
In essence, the new algorithm is a modification of the PSO-
TSA because it uses all phases of Particle Swarm
Optimization from swarm initialization, searching for local
and global best particles to calculating new solutions from the
previous one. The only change in comparison with PSO-TSA
is the using of an idea: Bread Distributing Task. Indeed, the
algorithm was named as BDT-TSA. Initially, all polygons in
2PVD are assigned to k blocks with k is the number of
processors in the system by the mean of R - SESA algorithm
[15], [16]. Then, the fitness’s value of each block is
calculated; thus updates two best values: pbest and gbest. This
process is similar to the main PSO algorithm. However, in the
next step, only the “worst” and the “best” block are changed
and affected together. This means that a polygon in the
“worst” block will be transferred to the “best” one. This
polygon is randomly chosen through pbest and gbest values.
The algorithm repeats this process until the maximal iteration
step is reached.

These are some points that make BDT-TSA be different
with PSO-TSA. Firstly, a particle is not a solution. Instead, a
solution is a collection of particles. Secondly, the velocities
and positions of particles are not defined. The only thing that
makes a solution change is the index of element in the “worst”
particle, which is calculated through pbest and gbest values. In
the experiments, BDT-TSA was shown to be better than SESA
in both the saving threshold and the computational time.

The last optimization technique for the problem (1) – (2)
has been found from the literature [17]. In that paper, the
authors proposed a new algorithm named Stochastic
sImulation Test based Terrain Splitting Algorithm (SIT-TSA).
In essence, it is a stochastic and agent - based approach that
acts following by a basic principle: “It is supposed to be no
satisfied solution with probability p−1 after a series of

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No. 1, 2012

 132

failed stochastic simulation tests on various possibilities
derived from the original sample”. In the other word, this
principle behaves as a similar way to Monte Carlo method - a
class of computational algorithms that rely on repeated
random sampling to compute their results [3], [21]. The SIT-
TSA acts like the scenario above. An agent is randomly
initiated at a polygon. By using a local search method, an
ordered list of polygons in 2PVD is established. Then, by
multiple tests with random “sticks” dividing this list into k
blocks, a candidate list of this agent is set up. This process is
repeatedly performed for other agents. Finally, the optimal
solution with minimal saving threshold parameters will be
chosen from all the candidate lists. In addition, parallel
computing is used as an important aid for the reduction of total
computing time due to independent works between agents.

The SIT-TSA method converges to the global solution
instead of local one due to the best solution selection process
among all agents. Moreover, it can answer quickly whether a
solution may exist for a given parameters ε or not. This
method was shown to obtain more successful results than
PSO-TSA.

All these optimization algorithms were shown to be suitable
for the considered problem. Moreover, they outperform the
traditional methods. However, there is not a best method
among them. Each method has own advantages and situations.
Thus, our mission is to find which algorithm we should choose
for a specific input.

In what follows, we will make the comparisons between
them in two aspects: the saving threshold and the
computational time.

IV. THE COMPARISON OF SAVING THRESHOLD

A. The statistics by the number of polygons
In the experiment, we have run four algorithms above

following by the number of polygons and the number of
processors in two kinds of DEM terrain: medium (sizes: 4039
x 6529 ~ 24 million points) and large (sizes: 8024 x 9621 ~ 77
million points). The outputs are the saving thresholds and the
computational times.

We compare the saving thresholds of four algorithms for a
specific number of polygons and processors, and find the
smallest one. Then, we increase the number of cases for the
algorithm that has the smallest value of saving threshold by
one. The statistics are grouped following by the number of
polygons. Results are illustrated in Fig. 1.

From this figure, we may see that SIT-TSA obtains better
results than other algorithms in most cases. For example, when
the number of polygons is 5000, the numbers of cases
generated by GA-TSA, PSO-TSA, BDT-TSA and SIT-TSA
are 1, 3, 5 and 7, respectively. If we consider the total number
of cases, for a given number of polygon is 100 percents, the
percent values of all algorithms in the example above will be
6.25%, 18.75%, 31.25% and 43.75%. This means that if the
number of polygons in the input data is 5000, and the SIT-

TSA algorithm is chosen, the possibility for the saving
threshold of this algorithm to be the smallest one is nearly
44%.

The percent values of SIT-TSA in cases of 20, 50, 200, 500,

1000 and 2000 polygons are 42.85%, 37.5%, 27.78%, 27.78%,
43.75% and 38.89%, respectively. Thus, we should choose the
SIT-TSA algorithm if the number of polygons is large (over
1000) or small (below 50). In case the number of polygons is
medium, PSO-TSA should be chosen because it contributes
the largest percent values among all, i.e. 33.34% (500
polygons).

Through this figure, we can recognize another result that
BDT-TSA is better than PSO-TSA and GA-TSA. Except 500
polygons, the number of cases generated by BDT-TSA is
higher than the ones of PSO-TSA. Similarly, except 50
polygons, PSO-TSA creates more cases than GA-TSA does.
Therefore, we have an order of algorithms to be chosen, that is
SIT-TSA, BDT-TSA, PSO-TSA and GA-TSA. This order
helps us to choose the substitute for the main algorithm
mentioned above. For example, when the number of polygons
is large or small, if we do not choose SIT-TSA, BDT-TSA is
selected as the substitute. When the number of polygons is
medium, SIT-TSA is chosen as the substitute for the PSO-
TSA.

B. The statistics by the number of processors
This subsection performs the same statistics with the

previous one, but following by the number of processors.
Results are depicted in Fig. 2.

This figure shows that we should choose the SIT-TSA
algorithm if the numbers of processors are medium and small
(from 2 to 7). The numbers of cases for SIT-TSA with 2, 3, 4
processors are 10, 11, 8, respectively. The equivalent percent
values are 40%, 45.8% and 47.1%. In this situation, the order
of algorithms to be chosen is SIT-TSA, BDT-TSA, PSO-TSA
and GA-TSA.

When the number of processors is large (from 8 to 16), BDT
- TSA should be chosen as it contributes more cases than other
algorithms. For example, when we use 16 processors, the

Figure 1. The statistics of saving threshold by the number of polygons

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No. 1, 2012

 133

numbers of cases generated by GA-TSA, PSO-TSA, BDT-
TSA and SIT-TSA are 2, 1, 10 and 6, respectively. The
equivalent percent values are 10.53%, 5.26%, 52.63% and
31.58%. The order of algorithms is BDT-TSA, PSO-TSA,
SIT-TSA and GA-TSA.

C. Average saving threshold by number of polygons

In Fig. 3, we compare the average saving thresholds of four

algorithms following by the number of polygons. These values
are calculated on the medium DEM terrain. Fig. 3 shows that
there is little difference between four algorithms when the
number of polygons is below 500. The maximal differences
between the algorithms in cases of 20, 50, 200 and 500
polygons are 0.005, 0.004, 0.026 and 0.099, respectively.
However, when the number of polygons is large, the
difference is getting obvious. The maximal differences
between the algorithms in cases of 1000, 2000 and 5000
polygons are 13.1, 11.04 and 8.16, respectively.

The SIT-TSA algorithm obtains the smallest average saving
thresholds among all other ones. For example, when the
number of polygons is 1000, the threshold values of GA-TSA,
PSO-TSA, BDT-TSA and SIT-TSA are 15.1, 3.14, 2.13 and

2.04, respectively. From 500 polygons afterward, we can
clearly see that the line of GA - TSA is higher than the ones of
PSO-TSA, BDT-TSA and SIT-TSA. Thus, the order of all
algorithms in Fig. 3 should be SIT-TSA, BDT-TSA, PSO-
TSA and GA-TSA.

In Fig. 4, we also calculate the average saving thresholds of

four algorithms similar to Fig. 3, but on the large DEM terrain.
Through this figure, GA-TSA is shown to obtain higher saving
threshold values than other algorithms because its line is quite
far from the remains. Below 500 polygons, the three left lines
are nearly the same. The maximal differences between these
lines in cases of 20, 50, 200 and 500 polygons are 0.000923,
0.001276, 0.000079 and 0.000179. For the range [500, 5000]
polygons, the line of BDT-TSA is higher than the rests. Thus,
BDT-TSA is suitable for the input whose numbers of polygons
are medium and small, and the DEM terrain is large.

Although the two lines of PSO-TSA and SIT-TSA are nearly
the same for all cases, PSO-TSA still obtains smaller values of
saving threshold than SIT-TSA does. For example, the
difference between these lines in case of 20 polygons is
0.000008. More polygons are added, more obvious the
difference is. When the number of polygons is 5000, the
difference is increased to 0.001543. Thus, the order of all
algorithms in this figure is PSO-TSA, SIT-TSA, BDT-TSA
and GA-TSA.

D. Average saving threshold by number of processors
Now, we perform the same calculations as in the previous

subsection, but for the number of processors. Results are
shown in Fig. 5 and Fig. 6.

In Fig. 5, the line of GA-TSA is higher than other ones. In
the range [2, 12] processors, SIT-TSA is better than BDT-
TSA, and BDT-TSA is better than PSO-TSA. The threshold
value of BDT-TSA is approximately 2.11 times higher than
the one of SIT-TSA. These numbers in cases of PSO-TSA and
GA-TSA are 6.73 and 48.1, respectively. When the number of
processors is 16, the differences between SIT-TSA, BDT-TSA
and PSO-TSA are quite small (~ 0.02). Thus, we should
choose the number of processors in the range above to get the

Figure 4. The average saving thresholds on the large DEM terrain

Figure 3. The average saving thresholds on the medium DEM terrain

Figure 2. The statistics of saving threshold by the number of processors

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No. 1, 2012

 134

distinct results of all algorithms. The order of all algorithms in
this situation is SIT-TSA, BDT-TSA, PSO-TSA and GA-TSA.

Fig. 6 shows a different result with the figure above. Except
GA-TSA which produces the worst result in comparison with
the rests, the other algorithms always create the values of
saving threshold below 0.051. In the range [2, 4] processors,
the line of BDT-TSA is higher than the ones of PSO-TSA and
SIT-TSA. The maximal difference between BDT-TSA and
these algorithms is 0.05 when the number of processors is two.
The difference is getting smaller when more processors are
added. The saving thresholds of three algorithms are
approximately equal in the range (4, 8] processors.

The last range (8, 16] shows the saving threshold of BDT-
TSA is smaller than the ones of PSO-TSA and SIT-TSA.
Thus, we should choose the BDT-TSA if the number of
processors is large. When the numbers of processors are
medium and small, PSO-TSA and SIT-TSA are selected,
respectively.

E. Advanced statistics of the saving threshold

In Fig. 7, we summarize the statistics and draw the
histograms of all algorithms. Results show that both the

minimal and maximal values of SIT-TSA, BDT-TSA are
smaller than the ones of PSO-TSA and GA-TSA, respectively.
In SIT-TSA, 25 percents of the saving thresholds are smaller
than 0.000321. The numbers in cases of BDT-TSA, PSO-TSA
and GA-TSA are 0.0003035, 0.000060 and 0.027977,
respectively. We can recognize that SIT-TSA is not better than
PSO-TSA and BDT-TSA in this situation. However, the
median value of SIT-TSA points out that 50 percents of the
saving thresholds are smaller than 0.003707. This number is
smaller than PSO-TSA (0.008759), BDT-TSA (0.0187035)
and GA-TSA (0.163955).

75 percents of saving thresholds state that PSO-TSA is the

best method with value 0.031135 in comparison with SIT-
TSA (0.055907), BDT-TSA (0.1049830) and GA-TSA
(0.393762). However, 25 percents of left saving thresholds of
PSO-TSA are larger values than SIT-TSA (max = 4.431103)
and BDT-TSA (max = 4.3754530). Indeed, this algorithm is
somehow not better than SIT-TSA and BDT-TSA. The mean
values clearly show the order of algorithms to be chosen: SIT-
TSA, BDT-TSA, PSO-TSA and GA-TSA.

We also draw the normal Q-Q plots of all algorithms. From
Fig. 8, the saving threshold values of all algorithms do not
follow the standard distribution.

Figure 8. Normal Q-Q Plots of all algorithms

Figure 7. Histograms and summary statistics of all algorithms

Figure 6. The average saving thresholds on the large DEM terrain

Figure 5. The average saving thresholds on the medium DEM terrain

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No. 1, 2012

 135

F. The saving threshold prediction
In this subsection, we will construct the models to predict

the saving threshold values of all algorithms following by the
size of DEM terrain (DEM), the number of polygons in the
terrain (Pol) and the number of processors in the system
(Proc). Fig. 9 shows the distributions of the saving thresholds
of all algorithms. Obviously, the threshold values in the first
43 tests are much higher than the remains. In fact, they are
conducted from the medium DEM terrain. Indeed, small DEM
terrains often create large values of saving threshold than large
DEMs do.

In what follow, we use the linear regression toolbox in the

software package R1 to construct the prediction models for all
algorithms.

SIT – TSA = 0.8290003 - 0.0001839 * DEM +
0.0659394 * Proc + 0.0001262 * Pol

, (3)

PSO – TSA = 1.6900059 - 0.00028 * DEM +
0.045665 * Proc + 0.000181 * Pol

, (4)

GA – TSA = 9.313887 - 0.0013 * DEM + 0.0000002 *
Proc + 0.001042 * Pol

, (5)

BDT – TSA = 0.9883551 - 0.0002 * DEM + 0.061936
* Proc + 0.000141 * Pol

. (6)

From these models, we can calculate the predictive saving
threshold values for all algorithms following by a certain
input. Then, we can choose the algorithm that produces the
smallest value among all. The experimental results also show
that the Akaike Information Criterion (AIC) values of SIT-
TSA, PSO-TSA, GA-TSA and BDT-TSA are 3.3, 22.25,
259.4 and 9.58, respectively. They reconfirm the order of
algorithms to be chosen, that is SIT-TSA, BDT-TSA, PSO-
TSA and GA-TSA.

V. THE COMPARISON OF COMPUTATIONAL TIME

A. Average computational time by the number of polygons
In the previous section, we have considered the saving

threshold of all algorithms. In addition to this criterion, the
computational time should be examined carefully. An
algorithm is not effective if it runs too long; although it can

produce the smallest value of saving threshold. Therefore, in
this section, we have also performed the same experiments
with Section 4, but focused intensively on the computational
time.

In Fig. 10, we investigate the average computational time of
all algorithms following by the number of polygons on the
medium DEM terrain. Results show that SIT-TSA is the most
effective algorithm when the numbers of polygons are small
and medium (below 200). In these cases, GA-TSA runs
approximately 35.4 times longer than SIT-TSA on average.
These numbers in PSO-TSA, BDT-TSA are 279 and 539
times, respectively. However, these differences are getting
smaller when the number of polygons increases, i.e. 1.03, 14
and 4.14 times longer than SIT-TSA in cases of GA-TSA,
PSO-TSA and BDT-TSA, respectively. The order of
algorithms in this situation is SIT-TSA, GA-TSA, PSO-TSA
and BDT-TSA.

When the number of polygons is large, GA-TSA is shown to

be the fastest algorithm among all. The computational times of
PSO-TSA, BDT-TSA and SIT-TSA are 15.3, 1.72 and 37.3
times longer than GA-TSA, respectively. When the number of
polygons increases, these numbers are larger as the amplitudes

1 The software package R is available at: http://cran.r-project.org

Figure 11. The average computational time on the large DEM terrain

Figure 10. The average computational time on the medium DEM terrain

Figure 9. The distributions of the saving thresholds of all algorithms

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No. 1, 2012

 136

of lines are expanded. Thus, in this situation, the order of
algorithms is GA-TSA, BDT-TSA, PSO-TSA and SIT-TSA.

In GA-TSA, the incremental level between two numbers of
polygons is 2.19 times. These numbers in cases of PSO-TSA,
BDT-TSA and SIT-TSA are 2.49, 1.65 and 17.2, respectively.
Indeed, they explain why the SIT-TSA turns from the fastest
algorithm to the slowest one as shown in above.

In Fig. 11, we calculate the average computational time on
the large DEM terrain. The results are similar to the ones on
the medium DEM. For the small and medium number of
polygons, SIT-TSA still predominates over the rests. The
computational times of GA-TSA, PSO-TSA and BDT-TSA
are 41.9, 367 and 764 times longer than the one of SIT-TSA,
respectively. These numbers are longer than the equivalent
results in Fig. 10 about 1.18, 1.31 and 1.41 times. Thus, this
fact explains why GA-TSA tends to the most stable algorithm
among all because it keeps a little change of the computational
time when the sizes of DEM terrain are increased.

For the large number of polygons, PSO-TSA, BDT-TSA and
SIT-TSA run 16.1, 1.51, 72.1 times longer than GA-TSA
does, respectively. The incremental levels between two
numbers of polygons in cases of GA-TSA, PSO-TSA, BDT-
TSA and SIT-TSA are 2.22, 2.57, 1.56 and 21.5, respectively.
The order of algorithms is kept intact as in the same situation
in Fig. 10.

B. Average computational time by the number of processors
This subsection investigates the average computational times

of all algorithms following by the number of processors.
Results are depicted in Fig. 12 and Fig. 13.

Fig. 12 shows that GA-TSA is the fastest algorithm in all

numbers of polygons. The computational times of PSO-TSA,
BDT-TSA and SIT-TSA are 14.7, 1.97 and 43.7 times longer
than GA-TSA. The order of algorithms in this situation is GA-
TSA, BDT-TSA, PSO-TSA and SIT-TSA.

Fig. 12 also points out that the processing times per
processor of GA-TSA, PSO-TSA, BDT-TSA and SIT-TSA
are 4.68, 45.9, 11.1 and 209 seconds, respectively. As such,
more processors are added, more effective the GA-TSA
shows. Besides, these numbers help us to give a predictive

value of computational time when processing a certain number
of processors.

In Fig. 13, the computational times of PSO-TSA, BDT-TSA
and SIT-TSA are 15.9, 1.63 and 137 times longer than GA-
TSA. The processing times per processor of GA-TSA, PSO-
TSA, BDT-TSA and SIT-TSA are 4.8, 49.3, 8.8 and 962
seconds, respectively. Except SIT-TSA, these numbers are
approximately equal to the equivalent results in Fig. 12. When
the sizes of the DEM terrain increase, the processing time per
processor of SIT-TSA increases drastically. Thus, we should
not choose SIT-TSA if the number of processors is large. The
order of all algorithms is kept intact in this situation.

C. The computational time prediction

In Fig. 14, we study the distribution of the computational
times of all algorithms. From this figure, we can easily
recognize that the times are small in the first 43 tests. For the
remains, the computational times, especially SIT-TSA,
increase remarkably.

We also use the linear regression toolbox in the software

package R to build the predictive models of computational
times for all algorithms.
SIT – TSA = -2666.8467 + 0.5031 * DEM - 156.8086

* Proc + 2.1872 * Pol
, (7)

PSO – TSA = -701.16554 + 0.09586 * DEM + , (8)

Figure 14. The distributions of the computational time of all algorithms

Figure 13. The average computational time on the large DEM terrain

Figure 12. The average computational time on the medium DEM terrain

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No. 1, 2012

 137

16.54679 * Proc + 0.27127 * Pol
GA – TSA = -2.8628398 + 0.000381 * DEM +

0.1578227 * Proc + 0.016741 * Pol
, (9)

BDT – TSA = 8.14011 + 0.000001 * DEM + 0.000001
* Proc + 0.02461 * Pol

.(10)

The AIC values of these algorithms are 1409.6, 965.41,
117.1 and 686.7, respectively. They re-confirm that the order
of algorithms to be chosen for the sake of computational time
is GA-TSA, BDT-TSA, PSO-TSA and SIT-TSA.

VI. FUZZY RULES GENERATION
Through the evaluations of the saving threshold and the

computational time, we have extracted the fuzzy rules for
these criteria. Results are described in Table 1 and Table 2
(Appendix). These rules can help us to determine the suitable
algorithm for a given data input. For example, the following
rule specifies a list of algorithms that optimize the saving
threshold,
If “DEM is large” and “The number of processors is

medium” and “The number of polygons is small” then
“the order of algorithms to be chosen is PSO - TSA,

SIT - TSA, BDT - TSA and GA - TSA”

.(11)

If we want to focus on the computational time criterion, the
rule in (11) is replaced by
If “DEM is large” and “The number of processors is

medium” and “The number of polygons is small” then
“the order of algorithms to be chosen is SIT - TSA, GA

- TSA, PSO - TSA and BDT - TSA”

.(12)

If we want to calculate the predictive values of these criteria
for all algorithms in the list, the equations from (3) to (10) can
be used.

VII. CONCLUSIONS
This paper aimed to introduce some new results of Terrain

Splitting Optimization problem, which is considered as a
promising topic in Geographic Information Systems. We
presented their mechanisms, advantages as well as limitations.
Besides, we also examined the characteristics of four best
current methods following by two criteria: the saving
threshold and the computational time. The comparisons
between them were made completely and summarized through
the fuzzy rules. Thus, these highlights could help us to choose
the appropriate algorithm for a given data input.

Future works will concern some methods to query
information on three-dimensional terrains as well as exploit
attribute information.

APPENDIX

TABLE I. FUZZY RULES OF THE SAVING THRESHOLD
No. DEM Processors Polygons The order of

algorithms

1 Medium Small Small SIT ‐ TSA, BDT ‐ TSA,
PSO ‐ TSA and GA ‐

TSA.

2 Medium Small Medium PSO ‐ TSA, SIT ‐ TSA,
BDT ‐ TSA and GA ‐ TSA

3 Medium Small Large SIT ‐ TSA, BDT ‐ TSA,
PSO ‐ TSA and GA ‐

TSA.
4 Medium Medium Small SIT ‐ TSA, BDT ‐ TSA,

PSO ‐ TSA and GA ‐
TSA.

5 Medium Medium Medium PSO ‐ TSA, SIT ‐ TSA,
BDT ‐ TSA and GA ‐ TSA

6 Medium Medium Large SIT ‐ TSA, BDT ‐ TSA,
PSO ‐ TSA and GA ‐

TSA.
7 Medium Large Small BDT ‐ TSA, PSO ‐ TSA,

SIT ‐ TSA and GA ‐ TSA.

8 Medium Large Medium PSO ‐ TSA, SIT ‐ TSA,
BDT ‐ TSA and GA ‐ TSA

9 Medium Large Large BDT ‐ TSA, PSO ‐ TSA,
SIT ‐ TSA and GA ‐ TSA.

10 Large Small Small SIT ‐ TSA, BDT ‐ TSA,
PSO ‐ TSA and GA ‐

TSA.
11 Large Small Medium SIT ‐ TSA, BDT ‐ TSA,

PSO ‐ TSA and GA ‐
TSA.

12 Large Small Large SIT ‐ TSA, BDT ‐ TSA,
PSO ‐ TSA and GA ‐

TSA.
13 Large Medium Small PSO ‐ TSA, SIT ‐ TSA,

BDT ‐ TSA and GA ‐ TSA

14 Large Medium Medium PSO ‐ TSA, SIT ‐ TSA,
BDT ‐ TSA and GA ‐ TSA

15 Large Medium Large PSO ‐ TSA, SIT ‐ TSA,
BDT ‐ TSA and GA ‐ TSA

16 Large Large Small BDT ‐ TSA, PSO ‐ TSA,
SIT ‐ TSA and GA ‐ TSA

17 Large Large Medium BDT ‐ TSA, PSO ‐ TSA,
SIT ‐ TSA and GA ‐ TSA

18 Large Large Large BDT ‐ TSA, PSO ‐ TSA,
SIT ‐ TSA and GA ‐ TSA

TABLE II. FUZZY RULES OF THE COMPUTATIONAL TIME
No. DEM Processors Polygons The order of

algorithms
1 Medium Small Small SIT ‐ TSA, GA ‐ TSA,

PSO ‐ TSA and BDT ‐
TSA

2 Medium Small Medium SIT ‐ TSA, GA ‐ TSA,
PSO ‐ TSA and BDT ‐

TSA
3 Medium Small Large GA ‐ TSA, BDT ‐ TSA,

PSO ‐ TSA and SIT ‐
TSA.

4 Medium Medium Small SIT ‐ TSA, GA ‐ TSA,
PSO ‐ TSA and BDT ‐

TSA
5 Medium Medium Medium SIT ‐ TSA, GA ‐ TSA,

PSO ‐ TSA and BDT ‐
TSA

6 Medium Medium Large GA ‐ TSA, BDT ‐ TSA,
PSO ‐ TSA and SIT ‐

TSA.
7 Medium Large Small SIT ‐ TSA, GA ‐ TSA,

PSO ‐ TSA and BDT ‐
TSA

8 Medium Large Medium SIT ‐ TSA, GA ‐ TSA,
PSO ‐ TSA and BDT ‐

TSA

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No. 1, 2012

 138

9 Medium Large Large GA ‐ TSA, BDT ‐ TSA,
PSO ‐ TSA and SIT ‐

TSA.
10 Large Small Small SIT ‐ TSA, GA ‐ TSA,

PSO ‐ TSA and BDT ‐
TSA

11 Large Small Medium SIT ‐ TSA, GA ‐ TSA,
PSO ‐ TSA and BDT ‐

TSA
12 Large Small Large GA ‐ TSA, BDT ‐ TSA,

PSO ‐ TSA and SIT ‐
TSA.

13 Large Medium Small SIT ‐ TSA, GA ‐ TSA,
PSO ‐ TSA and BDT ‐

TSA
14 Large Medium Medium SIT ‐ TSA, GA ‐ TSA,

PSO ‐ TSA and BDT ‐
TSA

15 Large Medium Large GA ‐ TSA, BDT ‐ TSA,
PSO ‐ TSA and SIT ‐

TSA.
16 Large Large Small SIT ‐ TSA, GA ‐ TSA,

PSO ‐ TSA and BDT ‐
TSA

17 Large Large Medium SIT ‐ TSA, GA ‐ TSA,
PSO ‐ TSA and BDT ‐

TSA
18 Large Large Large GA ‐ TSA, BDT ‐ TSA,

PSO ‐ TSA and SIT ‐
TSA.

ACKNOWLEDGMENT
The authors are greatly indebted to the Editor-in-Chief Prof.

Soumen Ganguly; anonymous reviewers for their comments
and suggestions which improved the quality and clarity of
paper.

REFERENCES
[1] Catmull E., A subdivision algorithm for computer display of curved

surfaces (Dissertation for the Doctoral Degree). USA: University of
Utah, 1974.

[2] CUI YongyiZHOU, DongruWAN, GangFU Huasheng, “Web VRGIS
Study Based on VRML,” Computer Engineering, vol. 8, 2002.

[3] Eckhardt Roger, “Stan Ulam, John von Neumann, and the Monte Carlo
method,” Los Alamos Science, vol. 15, pp. 131-137, 1987.

[4] Fraser Alex, Donald Burnell, Computer Models in Genetics. New York:
McGraw-Hill, 1970.

[5] Foley J, Van D A, Feiner S K, Hughes J F., Computer Graphics:
Principles and Practice. Reading, MA, USA: Addison-Wesley, 1990.

[6] GAO Ying-jie et al., “Development of DEM on 1:10000 Scale and Its
Application in Geo-sciences,” Journal of Anhui Agricultural Sciences,
vol. 2, 2009.

[7] Holland J H., “Adaptation in natural and artificial system,” Ann Arbor,
USA: The University of Michigan Press, 1975.

[8] Kennedy, J. and Eberhart, R. C., “Particle swarm optimization,”
Proceedings of IEEE International Conference on Neural Networks,
Perth, WA, Australia, 27 November - 01 December 1995, pp. 1942-
1948.

[9] LI Lin-lin, CAO Kai-bin, GUAN Bin, ZHU Wei-dong, “Study on the
Application of WebGIS and VR in the Information System of Real
Estate,” Sci-Tech Information Development & Economy, vol. 5, 2007.

[10] LAN Xiaoji, QIU Juxiang, “Digital City GIS-Virtual Tourism,” Land
and Resources Informatization, vol. 1, 2009.

[11] LIN Yao-hua, ZHU Kun-zi, CHEN Jing, “The Development of Putian
City Real Estate Information System Based on WEB GIS,” Journal of
Xinxiang University (Natural Science Edition), vol. 3, 2009.

[12] Le Hoang Son, Pham Huy Thong, Nguyen Duy Linh, Nguyen Dinh Hoa,
and Truong Chi Cuong, “Some Results of 3D Terrain Splitting By 2D

Polygonal Vector Data,” International Journal of Machine Learning and
Computing, vol. 1, no. 3, pp. 253-262, 2011.

[13] Le Hoang Son, Pham Huy Thong, Nguyen Duy Linh and Nguyen Dinh
Hoa, “An Integration of Particle Swarm Optimization and Bread-
Distributing Task for 3D Terrain Splitting Problem,” International
Journal of Computer Science & Emerging Technologies, vol. 2, no. 4,
pp. 463 – 469, 2011.

[14] Le Hoang Son, Pham Huy Thong, Nguyen Duy Linh, Truong Chi Cuong
and Nguyen Dinh Hoa, “Developing JSG Framework and Applications
in COMGIS Project,” International Journal of Computer Information
Systems and Industrial Management Applications, vol. 3, pp. 108 – 118,
2011.

[15] Le Hoang Son, Pham Huy Thong, Truong Thi Hanh Phuc, Nguyen Dinh
Hoa, Nguyen Thi Hong Minh, “Some Extensions of Terrain Splitting
and Mapping Problem,” International Journal of Computer Theory and
Engineering, vol. 3, no. 5, pp. 590 – 597, 2011.

[16] Le Hoang Son, Pham Huy Thong, Truong Thi Hanh Phuc, Nguyen Dinh
Hoa, Nguyen Thi Hong Minh, “An Improvement of SESA algorithm for
Terrain Splitting and Mapping Problem,” Journal on Information
Technologies & Communications, Special Issue on Research,
Development and Application on Information & Communication
Technology (Vietnam), vol. 6, no. 26, pp. 271 – 279, 2011.

[17] Le Hoang Son, Pham Huy Thong, “A novel stochastic-based
optimization algorithm for 3D terrain splitting by 2D polygonal vector
data,” Journal of Research and Practice in Information Technology,
submitted for publication.

[18] M. van Kreveld, Digital Elevation Models: overview and selected TIN
algorithms. Berlin: Springer-Velag, 1997.

[19] Miao Xuelan, “Application of vrml and webgis technology to the
traveling geographic information system,” Computer Applications and
Software, vol. 7, 2005.

[20] MA Pengfei, ZHAO Wenji, HU Zhuowei, DUAN Fuzhou, CAI Wenbo,
“Research of 3 - Dimensional Visualization of Rural Folk Tourism
Sight,” Geospatial Information, vol. 5, 2009.

[21] Nicholas Metropolis, “The beginning of the Monte Carlo method,” Los
Alamos Science, Special Issue, pp. 125–130, 1987.

[22] Nguyen Duc Thien, Le Hoang Son, Pier Luca Lanzi, and Pham Huy
Thong, “Heuristic Optimization Algorithms For Terrain Splitting and
Mapping Problem,” International Journal of Engineering and
Technology, vol. 3, no. 4, pp. 376 – 383, 2011.

[23] Ortiz, S., “Is 3D Finally Ready for the Web?,” Computers, vol. 43, no. 1,
pp. 14 – 16, 2010.

[24] SONG Wei, LI Hua, “Research of 3D Web GIS system based on X3D,”
Computer Engineering and Design, vol. 11, 2005.

[25] SHI Rong, XU Hui-ping, Chen Hua-gen, “Application of 3D Virtual
WebGIS in Earthquake Disaster Prevention and Mitigation,” Journal of
Seismological Research, vol. 2, 2008.

[26] WANG Feng, LIU Ren-yi, LIU Nan, “Study on the application of
WebGIS and virtual reality technology in tourism development,” Journal
of Zhejiang University (Sciences Edition), vol. 6, 2005.

[27] WANG Wei,WU Sheng, “Research on the Integration of 3D Geographic
Information Web Services,” Geomatics World, vol. 1, 2008.

[28] YIN Xue-song, “On Real Estate Management Informatization of PKU,”
Research and Exploration in Laboratory, vol. 3, 2009.

[29] ZHANG Yong-fu, LIU Jin-bao, MU Yang, “Analysis and Design of
City Tourism Information System Based on WebGIS and Virtual Reality
Technology,” Aeronautical Computing Technique, vol. 1, 2008.

AUTHORS PROFILE

Le Hoang Son is a researcher at the Center for High Performance Computing,
Hanoi University of Science, VNU. His major field includes Data Mining,
Geographic Information Systems and Parallel Computing. He is a member of
IACSIT and also an associate editor of the International Journal of
Engineering and Technology (IJET). He also served as a reviewer for PACIS
2010, ICMET 2011, ICCTD 2011, International Journal of Computer and
Electrical Engineering (IJCEE), Imaging Science Journal (IMS). Email:
sonlh@vnu.edu.vn. Tel.: +84-904-171-284.

