
IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No. 1, 2012

 111

ANZ based Task Allocation Algorithm (ANZA) for Computational Grid
Arun Baruah

133/4, 4th Crs, Munekolala
Marathalli, Bangalore

India
http://www.systemprogrammers.net/

Abstract— Due to the advancement in the internet technologies, the
processing power of the cpu and the low cost high speed bandwidth, a
need arises for the geographically distributed network of computers
to solve the problems, which requires high computing power and
large number of resources. Thus, Grid computing was born. Grid
Computing consists of geographically distributed and heterogeneous
systems. They help to solve large-scale problems of science,
engineering and commerce. There are several well known grids
existing these days, which are BONIC, GLOBUS, CONDOR,
ALCHEMI to name a few.
The main requirement and the challenge of the grid computing is the
allocation of the tasks in the system. Since, its geographical
distributed and heterogeneous in nature, it is very hard to come up
with the most optimal resources for the given tasks to be executed.
Many algorithms have been designed to solve this problem. We
propose in this paper the use of Ant Colony Optimization based
approach for task allocation (ANZA) and scheduling in
computational grid. ANZA is massively distributed task allocation
algorithm that takes the inspiration from biological ants, how the ants
find their foods. The ant colony optimization technique is a
population based search techniques for the solution of combinatorial
optimization problem for resource discovery in grids. Making the use
of pheromone trails (which evaporates in due course of time), the
algorithms adapts effortlessly in the grid environment, which is prone
to network failure. The use of distributed agents (ants) working in
parallel and independent of each other for resource discovery
anticipates the needs to maintain global state across the nodes. This
help to save memory requirements. A detailed performance analysis
is presented where we analyze the effect of various parameter settings
of ANZA which helps to better understand the factors on which the
resource allocation depends.

Keywords- Ant Colony Optimizations, Grid Computing, Task
Allocation

 Introduction

Grids consists of network of loosely coupled, geographically
distributed computing resource, where end user submits a task to the
grid and the Grid’s resource manager (GRM) allocates the task to an
appropriate grid nodes for execution. The aim is the find a resource
that is capable of handling the task on hand, while considering the
computation cost that arises as a result of using the resource
measured in terms of grid $ and transmission network cost. The main
aim is to minimize the cost and time. ANZA does the cost and time
minimization in a massively distributed manner. Task allocation in
grid is an NP hard problem. This paper proposes ANZA, a highly
distributed algorithm for task allocation in computational grids.
Section I briefly explains other existing task allocation schemes.
Section II provides an overview of ANZA. Section III describes the
algorithms. Section IV describes the performance analysis of ANZA
and Section V concludes this paper.

I. Existing Grid task allocation schemes:

A) Static Heterogeneous Energy Aware task Mapping:
Heuristic static mapping [1], is ideal when nodes go down
frequently, and the communication cost are very evident in
comparisons to task processing cost, but scale poorly to
large tasks.

B) Pooling: Pooling individual resources [2] to determine their
applicability for a particular task, through pretty optimal for
small grids, scales very poorly, and forces a long queuing
time for tasks, irrespective of policy.

C) Ontological Task Definition and Allocation: This approach
[3] uses user’s input to determine the nature of the grid
application and therefore determines mapping. This
approach requires the availability of immediate
comparisons between all resources, something not feasible
is very large grid architectures.

D) Multiple Algorithm Spatial Modelling: This approach [4],
very effective for mobile reconfiguration agent grids,
requires massive computations to be carried out to
determine the order of task allocation.

II. Overview of proposed algorithm ANZA

Ant Colony Optimization is a powerful technique often employed to
solve optimization problems in a fixed search-space. It is
computationally appealing as it is simple to implement and
computationally robust with respect to local minima and maxima
provided enough iterations are performed [5]. It also inherently
parallel and can be implemented in a massively parallel way. ACO
provides us with a biological metaphor of how decentralized systems
of simple, interacting and often mobile agents can function
collectively to yield complex behaviour. The emergent collective
intelligent stems from the network of interaction that exist among
individuals and their environment. We propose a ACO heuristic
solution to the task allocation problem in Grid by programming the
mathematical model of the behaviour of the ACO into mobile agents.
ANZA is implemented in a massively parallel manner and this
contributes to its speed of allocation. The Global Resource Manager
(GRM) which accepts the tasks from the user maintains two queues,
one for the task that requires time optimization and the other requires
cost optimization. As soon as the task is received by the GRM, it is
queued into the appropriate queue depending on the scheduling
policy specified by the user. Another module on the GRM is in
charge of removing tasks from the queue and making them ready for
allocation. We employ a Weighted Round Robin scheduling policy,
where in the time optimization queue is emptied at faster rate then the
cost optimization queue.
In order to test our algorithm, we have implemented a tired
architecture where we have a LRM (local resource manager) below
the GRM which hold administrative authority over a subset of Grid
Resources that registered with it. The task that was removed from the
queue stated above is handled over to all the LRM’s which then
individually compute the best allocation for this task making use of
ANZA. From the LRM for each task, we deploy an Explorer Ants,
which crawl the grid foraging for the best possible grid resource to
allocate the task to. Each ant chooses its next hop on the basis of a

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No. 1, 2012

 112

stochastic function that depends on two parameters. (i) The proximity
of the grid resources to keep the communication cost and
transmission time low. (ii) the trail intensity which is a function of the
number of ants that have gone before on that link.
After running the algorithm for a specific number of cycles the
emergent path appears leading to the heuristically best choice for
allocating that particular task. Now that we have seen the context in
which ANZA operates in the next session, we present the algorithms
each of which running on different system that make up ANZA.

III. ANZA - Algorithms

ANZA algorithms have seven modules. They are: a) Scheduling
algorithm, b) Task Handover algorithm, c) Ant-Deployment
algorithm, d) Select next hop algorithm, e) Ant reception and
evaluation algorithm, f) Allocator algorithm and g) De-allocator
algorithm

a) Scheduling Algorithm:

Function AntScheduler(task t, policy p, cost c, time s)
Input:
 Task t
 Policy p -> where p is a scheduling policy which is either i) cost-
optimized, ii) time-optimized, or iii)custom-optimized(parameters c
& t specified by the end user)
Cost c, the grid$ threshold
Time t, the communication time threshold

Output:
 The queuing of the task partitions in the appropriate queue:
BEGIN
 if (p==cost-optimized)
 enque-cost-queue(t)
 else if (p== time-optimized)
 enqueue-time-queue(t)
 else if(s <= time-threshold-upper-limit && s>= time-threshold-
lower-limit)
 enqueue-time-queue(t)
 else if(s <= cost-threshold-upper-limit && s >= cost-threshold-
lower-limit)
 enqueue-cost-queue(t)
 end if
END

The scheduling module runs at the GRM and supports three types of
scheduling policies, namely cost optimization, time optimization and
custom parameter specification (CPS). For time optimization the
objective is to minimize the time of execution to within a pre
determined threshold and for cost optimization, the objective is to
minimize the cost of execution, measured in Grid$ to within a similar
threshold. After accepting the task, the task is queued into either the
time queue or the cost queue as decided by the policy. In case of CPS
the task is queued into either the cost queue or the time queue based
on the value of the parameters specified.

b) Task handover Algorithm:
Function task-handover()
Input:
 none
Output:
 Dispatching task partitions to the appropriate β grid, where β grid
is defined as the sub-grid under the administrative influence of an
LRM.

BEGIN
 while time-weight times
 Current-task = dequeue-time-queue()
 for each LRM lr
 Send-to-lrm(lr, current-task)
 end while
 while cost-weight times
 Current-task = dequeue-cost-queue()
 for each LRM lr
 Send-to-lrm(lr, current-task)
 end while
END

The task-handover module runs the GRM and selects the tasks from
the two queues to send for allocation based on a weighted round
robin scheduling policy. For each time frame, time-weight tasks are
dequeued from the time queue and cost-weight partitions are
dequeued from the cost queue. These tasks are handed over to the
appropriate LRM to be allocated in its β Grid.

c) Ant-Deployment algorithm

Function Ant-Deployment(LRM lr)
Input:
LMR lr, the local resource manager that acts as the source for the
deployments of ants.
Output:
 Ants are deployed onto the β grid under lr.
 grid-resource gr
 out-bound-vector obv
 ant-agent aa
while ant-maxcnt times
 aa = construct-ant()
 add-to-tabu-list(lg)
 gr = select-next-hop (obv, aa)
 aa.route-cost += link-cost
 aa.$cost += $cost(nexthop)
 transmit ant on choosen link
end while

The ants are deployed from the LRM to the corresponding β Grid.
Each ant carries the task characteristics, the nodes visited so far, the
route cost so far and the Grid$ spent so far. The ant also maintains a
tabu list which contains a list of visited links. This list is maintained
so that the ants can avoid travelled links and thus avoid cycles. The
outbound vector maintains the link characteristics of all outbound
links. The characteristics include, trail intensity of both cost
pheromone and time pheromone and the communication cost as
obtained by using a modified link state flooding approach. This link
state flooding approach provides both neighbour identification and
neighbour proximity detection. The ant selects the next hop
stochastically based on the link characteristics of the neighbours
which is contained in the out bound vector.

d) Select next hop algorithm

Function select-next-hop(out-bound-vector obv, ant-agent aa)
Input:
 Obv, an array of outbound links
Output:
 The choosen outbound link
BEGIN
 for ant aa, foreach entry in obv

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No. 1, 2012

 113

 compute Pij for each entry in obv as,

 CTij(t) = pc CTij(t)
 TTij(t) = pt TTij(t)
 if aa.Schedule-type ==cost-optimized
 pijkx(t) =[CTij(t)]α [C(i,j)]β/Nk
 Nk = ∑k in (S – Tabu(k)) [CTij(t)α[C(i, j)]β
 else if aa.Schedule-type == time-optimize
 pijkx (t) = [TTij(t)]α [C(i,j]β / Nk
 Nk = ∑k in (s – Tabu(k)) [TTij(t)]α [C(i, j)]β
Select return j with probability pij
END

This function selects the next hop given the out bound vector. The
next hop is selected probabilistically based on the pheromone
intensity and the cost of that link. The pheromone evaporation rate as
specified by p makes the system responsive to dynamic network
conditions. The fact that next hops are chosen stochastically and not
deterministically ensures continuous exploration of alternative routes.

e) Ant reception and evaluation algorithm

Function ant-receipt-eval(ant-agent aa)
Input:
 ant-agent aa i.e., the ant received at this particular grid resource
Output:
 the received ant is either routed or sent back with success
indication
 or sent back with failure indication
//variables
grid-resource gr
link ln //a linkto a neighbouring grid resource
if backtrack(aa)
 ln=nexthop(aa.path)
 if this is an ant that successfully found a grid resource for
allocation,
 increase-trail-intensity(K)
 else if this is an ant that discovered a threshold violation
 decrease-trail-intensity(k)
 else if(ant.routecost >= time-threshold)
 gr=select-next-hop(obv,aa)
 add-to-tabu-list(gr)
 aa.routecost+=linkcost
 aa.$cost += $cost(nexthop)
 send ant on socket to grid resource gr
 return
 end if
 if(ant.route$ >=$_threshold)
 gr=select-next-hop(obv, aa)
 add-to-tabu-list(gr)
 aa.routecost+=linkcost
 aa.$cost +=$cost(nexthop)
 send ant via network link to grid resource gr
 return
 end if
 f=free-cycle-check()
 if(f >= ant.tack-size)
 optimality-index = µf + αMIPS_Rating
 Begin backtrack
 ln = nexthop(aa.path)
 send ant via network link to grid resource gr
 else
 gr=select-next-hop(obv,aa)
 end

An ant arriving at a Grid Resource can be either a back tracking ant
or an ant that arrived here as an intermediate hop in its search for a
potential grid resource for accommodating this task. A number of
scenarios are possible. The ant of the latter case can find this resource
suitable for allocation in which case it begins to backtrack using the
path stored so far while rolling up pheromone levels proportionately
based on the goodness of the fit. The goodness of the fit is measured
by an optimality index that factors in the extent to which constraint
satisfaction is achieved with respect to the scheduling parameters. It
takes into account the resource characteristics. An ant can also abort
its exploration from this node failing one or more of the thresholds in
which case it begins to backtrack using the path stored so far while
rolling down pheromone levels proportionately based on the
goodness of the fit. If none of the above conditions are satisfied, the
next hop is selected stochastically.

f) Ant reception and evaluation algorithm

Function send-allocator-ant()
Input:
 none
Output:
 an allocator ant is sent after convergence is achieved
for each ant-iteration
 receive all ants
 store each path and its count
 if p% of ants select the same path
 send allocator ant along same path
 for each edge ij in the path
 lower-trail-intensity()
 follow path ij
 end if

In the LRM, after a specified percentage of ants report back the same
path, the allocator ant is sent to the chosen Grid resource to allocate
memory and resources. As the allocator ant traces the path, it
proportionately lowers the pheromone levels.

g) Deallocation algorithm

Function deallocate()
Input:
 none
Output:
 return deallocator ant
BEGIN
 wait-for-task-completion()
 free(memory)
 //using the path allocator ant used to reach the resource
 for each edge ij in the path
 lower-trail-intensity()
 follow path ij
END

After the task completes its execution in the chosen grid resource, the
memory and resources are freed. The deallocator ant which is
actually the returning allocator ant returns to the LLGRB tracing the
same path backwards, which appropriately increasing pheromone
levels.

IV. Performance Analysis

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 2, No. 1, 2012

 114

The performance of ANZA depends on the parameter setting when it
runs. Some of the parameters that need to be optimized are α
(pheromone sensitivity index), β (cost sensitivity index) and p
(pheromone evaporation rate). To arrive at the optimum parameter
setting we had to rely on comprehensive experimentation on a trial
and error basis.
In the first char given below, we have analyse the impact of the
number of ants on the time taken to arrive at an optimum solution.
For our sample problem, we present the results in the chart where it is
evident that an increase in the number of ants per swarm results in
faster convergence.

Next we studied the improvement in the allocation with the increase
in the number of ant cycles. The results of this study are presented in
the second chart below:

V. Conclusion

We have presented ANZA, a massively distributed algorithm that
make use of ant optimization for allocating a task in a computational
grid while trying to balance conflicting requirement of cost and time.

REFERENCES

 [1] Shivle et. al., “Static Mapping of Subtasks in Heterogeneous Ad
Hoc Grid Environment”, 13th Heterogeneous Computing Workshop
(HCW) 2004
[2] Kurkovsky, S. and Bhagyavati, “Modelling a Computational Grid
of Mobile Devices as a Multi-Agent System”, Proceedings of the
International Conference on Artificial Intelligence, ICAI 2003, Los
Angeles, USA, 2003.
[3] “The Fraunhoffer Resource Grid” Institut Arbeitschiwrtschaftund
Otganization, Germany
[4] Sander, T. Peleschuk B., Grosz, A, “A Scalable Distributed
Algorithm for Efficient Task Allocation”, Proceedings of AAMAS’
02, Bologna, Italy, 2002.
[5] Dorigo, M., Middendorf, M., & Stutzle, T. (Eds.). (2000b),
“Abstract Proceedings of ANTS 2000 – From Ant Colonies to
Artificial Ants: Second International Workshop on Ant Algorithms”,
Brusseles, IRIDIA, Universite Libre de Bruxelles.

