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Abstract— Due to the advancement in the internet technologies, the 
processing power of the cpu and the low cost high speed bandwidth, a 
need arises for the geographically distributed network of computers 
to solve the problems, which requires high computing power and 
large number of resources. Thus, Grid computing was born. Grid 
Computing consists of geographically distributed and heterogeneous 
systems. They help to solve large-scale problems of science, 
engineering and commerce. There are several well known grids 
existing these days, which are BONIC, GLOBUS, CONDOR, 
ALCHEMI to name a few. 
The main requirement and the challenge of the grid computing is the 
allocation of the tasks in the system. Since, its geographical 
distributed and heterogeneous in nature, it is very hard to come up 
with the most optimal resources for the given tasks to be executed. 
Many algorithms have been designed to solve this problem. We 
propose in this paper the use of Ant Colony Optimization based 
approach for task allocation (ANZA) and scheduling in 
computational grid. ANZA is massively distributed task allocation 
algorithm that takes the inspiration from biological ants, how the ants 
find their foods. The ant colony optimization technique is a 
population based search techniques for the solution of combinatorial 
optimization problem for resource discovery in grids. Making the use 
of pheromone trails (which evaporates in due course of time), the 
algorithms adapts effortlessly in the grid environment, which is prone 
to network failure. The use of distributed agents (ants) working in 
parallel and independent of each other for resource discovery 
anticipates the needs to maintain global state across the nodes. This 
help to save memory requirements. A detailed performance analysis 
is presented where we analyze the effect of various parameter settings 
of ANZA which helps to better understand the factors on which the 
resource allocation depends. 
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Allocation 
 

 Introduction  

Grids consists of network of loosely coupled, geographically 
distributed computing resource, where end user submits a task to the 
grid and the Grid’s resource manager (GRM) allocates the task to an 
appropriate grid nodes for execution. The aim is the find a resource 
that is capable of handling the task on hand, while considering the 
computation cost that arises as a result of using the resource 
measured in terms of grid $ and transmission network cost. The main 
aim is to minimize the cost and time. ANZA does the cost and time 
minimization in a massively distributed manner. Task allocation in 
grid is an NP hard problem. This paper proposes ANZA, a highly 
distributed algorithm for task allocation in computational grids. 
Section I briefly explains other existing task allocation schemes. 
Section II provides an overview of ANZA. Section III describes the 
algorithms. Section IV describes the performance analysis of ANZA 
and Section V concludes this paper. 

I. Existing Grid task allocation schemes: 
 

A) Static Heterogeneous Energy Aware task Mapping: 
Heuristic static mapping [1], is ideal when nodes go down 
frequently, and the communication cost are very evident in 
comparisons to task processing cost, but scale poorly to 
large tasks. 

B) Pooling: Pooling individual resources [2] to determine their 
applicability for a particular task, through pretty optimal for 
small grids, scales very poorly, and forces a long queuing 
time for tasks, irrespective of policy. 

C) Ontological Task Definition and Allocation: This approach 
[3] uses user’s input to determine the nature of the grid 
application and therefore determines mapping. This 
approach requires the availability of immediate 
comparisons between all resources, something not feasible 
is very large grid architectures. 

D) Multiple Algorithm Spatial Modelling: This approach [4], 
very effective for mobile reconfiguration agent grids, 
requires massive computations to be carried out to 
determine the order of task allocation. 
 
II. Overview of proposed algorithm ANZA 

 
Ant Colony Optimization is a powerful technique often employed to 
solve optimization problems in a fixed search-space. It is 
computationally appealing as it is simple to implement and 
computationally robust with respect to local minima and maxima 
provided enough iterations are performed [5]. It also inherently 
parallel and can be implemented in a massively parallel way. ACO 
provides us with a biological metaphor of how decentralized systems 
of simple, interacting and often mobile agents can function 
collectively to yield complex behaviour. The emergent collective 
intelligent stems from the network of interaction that exist among 
individuals and their environment. We propose a ACO heuristic 
solution to the task allocation problem in Grid by programming the 
mathematical model of the behaviour of the ACO into mobile agents. 
ANZA is implemented in a massively parallel manner and this 
contributes to its speed of allocation. The Global Resource Manager 
(GRM) which accepts the tasks from the user maintains two queues, 
one for the task that requires time optimization and the other requires 
cost optimization. As soon as the task is received by the GRM, it is 
queued into the appropriate queue depending on the scheduling 
policy specified by the user. Another module on the GRM is in 
charge of removing tasks from the queue and making them ready for 
allocation. We employ a Weighted Round Robin scheduling policy, 
where in the time optimization queue is emptied at faster rate then the 
cost optimization queue. 
In order to test our algorithm, we have implemented a tired 
architecture where we have a LRM (local resource manager) below 
the GRM which hold administrative authority over a subset of Grid 
Resources that registered with it. The task that was removed from the 
queue stated above is handled over to all the LRM’s which then 
individually compute the best allocation for this task making use of 
ANZA. From the LRM for each task, we deploy an Explorer Ants, 
which crawl the grid foraging for the best possible grid resource to 
allocate the task to. Each ant chooses its next hop on the basis of a 
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stochastic function that depends on two parameters. (i) The proximity 
of the grid resources to keep the communication cost and 
transmission time low. (ii) the trail intensity which is a function of the 
number of ants that have gone before on that link. 
After running the algorithm for a specific number of cycles the 
emergent path appears leading to the heuristically best choice for 
allocating that particular task. Now that we have seen the context in 
which ANZA operates in the next session, we present the algorithms 
each of which running on different system that make up ANZA. 
 

III. ANZA - Algorithms 
 

ANZA algorithms have seven modules. They are: a) Scheduling 
algorithm, b) Task Handover algorithm, c) Ant-Deployment 
algorithm, d) Select next hop algorithm, e) Ant reception and 
evaluation algorithm, f) Allocator algorithm and g) De-allocator 
algorithm 
 

a) Scheduling Algorithm: 
 
Function AntScheduler(task t, policy p, cost c, time s) 
Input: 
   Task t 
   Policy p -> where p is a scheduling policy which is either i) cost-
optimized, ii) time-optimized, or iii)custom-optimized( parameters c 
& t specified by the end user) 
Cost c, the grid$ threshold 
Time t, the communication time threshold 
 
Output: 
   The queuing of the task partitions in the appropriate queue: 
BEGIN 
   if (p==cost-optimized) 
       enque-cost-queue(t) 
   else if (p== time-optimized) 
       enqueue-time-queue(t) 
   else if(s <= time-threshold-upper-limit && s>= time-threshold-
lower-limit) 
        enqueue-time-queue(t) 
   else if(s <= cost-threshold-upper-limit && s >= cost-threshold-
lower-limit) 
        enqueue-cost-queue(t) 
   end if 
END 
 
The scheduling module runs at the GRM and supports three types of 
scheduling policies, namely cost optimization, time optimization and 
custom parameter specification (CPS). For time optimization the 
objective is to minimize the time of execution to within a pre 
determined threshold and for cost optimization, the objective is to 
minimize the cost of execution, measured in Grid$ to within a similar 
threshold. After accepting the task, the task is queued into either the 
time queue or the cost queue as decided by the policy. In case of CPS 
the task is queued into either the cost queue or the time queue based 
on the value of the parameters specified. 
 

b)   Task handover Algorithm: 
Function task-handover() 
Input: 
     none 
Output: 
     Dispatching task partitions to the appropriate β grid, where β grid 
is defined as the sub-grid under the administrative influence of an 
LRM. 

 
BEGIN 
    while time-weight times 
        Current-task = dequeue-time-queue() 
    for each LRM lr 
        Send-to-lrm(lr, current-task) 
    end while 
    while cost-weight times 
       Current-task = dequeue-cost-queue() 
     for  each LRM lr 
        Send-to-lrm(lr, current-task) 
     end while 
END 
 
The task-handover module runs the GRM and selects the tasks from 
the two queues to send for allocation based on a weighted round 
robin scheduling policy. For each time frame, time-weight tasks are 
dequeued from the time queue and cost-weight partitions are 
dequeued from the cost queue. These tasks are handed over to the 
appropriate LRM to be allocated in its β Grid. 
 

c) Ant-Deployment algorithm 
 
Function Ant-Deployment(LRM lr) 
Input: 
LMR lr, the local resource manager that acts as the source for the 
deployments of ants. 
Output: 
    Ants are deployed onto the β grid under lr. 
    grid-resource gr 
    out-bound-vector obv 
    ant-agent aa 
while ant-maxcnt times 
       aa = construct-ant() 
       add-to-tabu-list(lg) 
       gr = select-next-hop (obv, aa) 
       aa.route-cost += link-cost 
       aa.$cost += $cost(nexthop) 
       transmit ant on choosen link 
end while 
 
The ants are deployed from the LRM to the corresponding β Grid. 
Each ant carries the task characteristics, the nodes visited so far, the 
route cost so far and the Grid$ spent so far. The ant also maintains a 
tabu list which contains a list of visited links. This list is maintained 
so that the ants can avoid travelled links and thus avoid cycles. The 
outbound vector maintains the link characteristics of all outbound 
links. The characteristics include, trail intensity of both cost 
pheromone and time pheromone and the communication cost as 
obtained by using a modified link state flooding approach. This link 
state flooding approach provides both neighbour identification and 
neighbour proximity detection. The ant selects the next hop 
stochastically based on the link characteristics of the neighbours 
which is contained in the out bound vector. 
 

d) Select next hop algorithm 
 
Function select-next-hop(out-bound-vector obv, ant-agent aa) 
Input: 
     Obv, an array of outbound links 
Output: 
      The choosen outbound link 
BEGIN 
     for ant aa, foreach entry in obv 
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     compute Pij for each entry in obv as, 
 
     CTij(t) = pc  CTij(t) 
     TTij(t) = pt TTij(t) 
     if aa.Schedule-type ==cost-optimized 
        pijkx(t) =[CTij(t)]α [C(i,j)]β/Nk 
       Nk = ∑k in (S – Tabu(k)) [CTij(t)α[C(i, j)]β 
    else if aa.Schedule-type == time-optimize 
    pijkx (t) = [TTij(t)]α [C(i,j]β / Nk 
    Nk = ∑k in (s – Tabu(k)) [TTij(t)]α [C(i, j)]β 
Select return j with probability pij 
END 
 
This function selects the next hop given the out bound vector. The 
next hop is selected probabilistically based on the pheromone 
intensity and the cost of that link. The pheromone evaporation rate as 
specified by p makes the system responsive to dynamic network 
conditions. The fact that next hops are chosen stochastically and not 
deterministically ensures continuous exploration of alternative routes. 
 

e) Ant reception and evaluation algorithm 
 
Function ant-receipt-eval(ant-agent aa) 
Input: 
    ant-agent aa i.e., the ant received at this particular grid resource 
Output: 
    the received ant is either routed or sent back with success 
indication 
    or sent back with failure indication 
//variables 
grid-resource gr 
link ln //a linkto a neighbouring grid resource 
if backtrack(aa) 
    ln=nexthop(aa.path) 
    if this is an ant that successfully found a grid resource for 
allocation, 
       increase-trail-intensity(K) 
    else if this is an ant that discovered a threshold violation 
       decrease-trail-intensity(k) 
    else if(ant.routecost >= time-threshold) 
         gr=select-next-hop(obv,aa) 
         add-to-tabu-list(gr) 
         aa.routecost+=linkcost 
         aa.$cost += $cost(nexthop) 
         send ant on socket to grid resource gr 
         return 
   end if 
    if(ant.route$ >=$_threshold) 
       gr=select-next-hop(obv, aa) 
       add-to-tabu-list(gr) 
       aa.routecost+=linkcost 
      aa.$cost +=$cost(nexthop) 
       send ant via network link to grid resource gr 
       return 
    end if 
    f=free-cycle-check() 
    if(f >= ant.tack-size) 
      optimality-index = µf + αMIPS_Rating 
      Begin backtrack 
      ln = nexthop(aa.path) 
      send ant via network link to grid resource gr 
   else 
      gr=select-next-hop(obv,aa) 
    end 

    
An ant arriving at a Grid Resource can be either a back tracking ant 
or an ant that arrived here as an intermediate hop in its search for a 
potential grid resource for accommodating this task. A number of 
scenarios are possible. The ant of the latter case can find this resource 
suitable for allocation in which case it begins to backtrack using the 
path stored so far while rolling up pheromone levels proportionately 
based on the goodness of the fit. The goodness of the fit is measured 
by an optimality index that factors in the extent to which constraint 
satisfaction is achieved with respect to the scheduling parameters. It 
takes into account the resource characteristics. An ant can also abort 
its exploration from this node failing one or more of the thresholds in 
which case it begins to backtrack using the path stored so far while 
rolling down pheromone levels proportionately based on the 
goodness of the fit. If none of the above conditions are satisfied, the 
next hop is selected stochastically. 
 

f) Ant reception and evaluation algorithm 
 
Function send-allocator-ant() 
Input: 
  none 
Output: 
  an allocator ant is sent after convergence is achieved  
for each ant-iteration 
  receive all ants 
  store each path and its count 
  if p% of ants select the same path 
    send allocator ant along same path 
    for each edge ij in the path 
      lower-trail-intensity() 
      follow path ij 
    end if 
 
In the LRM, after a specified percentage of ants report back the same 
path, the allocator ant is sent to the chosen Grid resource to allocate 
memory and resources. As the allocator ant traces the path, it 
proportionately lowers the pheromone levels. 
 

g) Deallocation algorithm 
 
Function deallocate() 
Input: 
   none 
Output: 
   return deallocator ant 
BEGIN 
   wait-for-task-completion() 
    free(memory) 
    //using the path allocator ant used to reach the resource 
    for each edge ij in the path 
         lower-trail-intensity() 
            follow path ij 
END 
 
After the task completes its execution in the chosen grid resource, the 
memory and resources are freed. The deallocator ant which is 
actually the returning allocator ant returns to the LLGRB tracing the 
same path backwards, which appropriately increasing pheromone 
levels. 
 

IV.  Performance Analysis 
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The performance of ANZA depends on the parameter setting when it 
runs. Some of the parameters that need to be optimized are α 
(pheromone sensitivity index), β (cost sensitivity index) and p 
(pheromone evaporation rate). To arrive at the optimum parameter 
setting we had to rely on comprehensive experimentation on a trial 
and error basis. 
In the first char given below, we have analyse the impact of the 
number of ants on the time taken to arrive at an optimum solution. 
For our sample problem, we present the results in the chart where it is 
evident that an increase in the number of ants per swarm results in 
faster convergence. 
 

 
Next we studied the improvement in the allocation with the increase 
in the number of ant cycles. The results of this study are presented in 
the second chart below: 
 

 

 
V. Conclusion 

 
We have presented ANZA, a massively distributed algorithm that 
make use of ant optimization for allocating a task in a computational 
grid while trying to balance conflicting requirement of cost and time. 
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