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Abstract—Software reliability process can be monitored 
efficiently using Statistical Process Control (SPC). It assists the 
software development team to identify and actions to be taken 
during software failure process and hence, assures better 
software reliability. In this paper we propose a control 
mechanism based on the cumulative observations of interval 
domain failure data using mean value function (average number 
of failures) of Weibull model, which is based on Non-
Homogenous Poisson Process (NHPP). The maximum likelihood 
estimation approach is used to estimate the unknown parameters 
of the model. 
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I. INTRODUCTION. 
Software reliability assessment is important to evaluate and 

predict the reliability and performance of software system, 
since it is the main attribute of software. To identify and 
eliminate human errors in software development process and 
also to improve software reliability, the Statistical Process 
Control concepts and methods are the best choice. SPC 
concepts and methods are used to monitor the performance of a 
software process over time in order to verify that the process 
remains in the state of statistical control. It helps in finding 
assignable causes, long term improvements in the software 
process. Software quality and reliability can be achieved by 
eliminating the causes or improving the software process or its 
operating procedures [1]. 

The most popular technique for maintaining process control 
is control charting. The control chart is one of the seven tools 
for quality control. Software process control is used to secure 
the quality of the final product which will conform to 
predefined standards. In any process, regardless of how 
carefully it is maintained, a certain amount of natural 
variability will always exist. A process is said to be statistically 
“in-control” when it operates with only chance causes of 
variation. On the other hand, when assignable causes are 
present, then we say that the process is statistically “out-of-
control.” 

Control charts can be classified into several categories, 
according to several distinct criteria. Depending on the number 
of quality characteristics under investigation, charts can be 

divided into univariate control charts or multivariate control 
charts. Furthermore, the quality characteristic of interest may 
be a continuous random variable or alternatively a discrete 
attribute. Control charts should be capable to create an alarm 
when a shift in the level of one or more parameters of the 
underlying distribution or a non-random behavior occurs. 
Normally, such a situation will be reflected in the control chart 
by points plotted outside the control limits or by the presence 
of specific patterns. The most common non-random patterns 
are cycles, trends, mixtures and stratification [2]. For a process 
to be in control the control chart should not have any trend or 
nonrandom pattern. 

SPC is a powerful tool to optimize the amount of 
information needed for use in making management 
decisions.  Statistical techniques provide an understanding of 
the business baselines, insights for process improvements, 
communication of value and results of processes, and active 
and visible involvement.  SPC provides real time analysis to 
establish controllable process baselines; learn, set, and 
dynamically improve process capabilities; and focus business 
areas needing improvement. The early detection of software 
failures will improve the software reliability. The selection of 
proper SPC charts is essential to effective statistical process 
control implementation and use. The SPC chart selection is 
based on data, situation and need [3]. 

The control limits for the chart are defined in such a manner 
that the process is considered to be out of control when the time 
to observe exactly one failure is less than LCL or greater than 
UCL. Our aim is to monitor the failure process and detect any 
change of the intensity parameter. When the process is in 
control, there is a chance for this to happen and it is commonly 
known as false alarm. The traditional false alarm probability is 
to set to be 0.27% although any other false alarm probability 
can be used. The actual acceptable false alarm probability 
should in fact depend on the actual product or process [10].  

II. LITERATURE SURVEY. 
This section presents the theory that underlies NHPP 

models, Weibull model and maximum likelihood estimation for 
Interval domain (i.e grouped) complete data. If ‘t’ is a 
continuous random variable with pdf: 1 2( ; , , , )kf t θ θ θK . where 

1 2, , , kθ θ K θ are k unknown constant parameters which need to 
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be estimated, and cdf: ( )F t . where, The mathematical 
relationship between the pdf and cdf is given 
by: ( )( ) df t F tdt= . Let ‘a’ denote the expected number of 
faults that would be detected given infinite testing time in case 
of finite failure NHPP models. Then, the mean value function 
of the finite failure NHPP models can be written 
as: , where F(t) is a cumulative distribution 
function. The failure intensity function 

( ) ( )m t aF t=
( )tλ  in case of the 

finite failure NHPP models is given by: ( ) '( )t aF tλ = [9].  

A. Data Analysis. 
There are two common types of failure data: time-domain 

and interval-domain. Some software reliability models can 
handle both types of data. The time domain approach involves 
recording the individual times at which failure occurred. The 
interval domain approach is characterized by counting the 
number of failures occurring during a fixed period (e.g., test 
session, hour, week, day). The collected data are a count of the 
number of failures in the interval. 

B. NHPP model. 
The Non-Homogenous Poisson Process (NHPP) based 

software reliability growth models (SRGMs) are proved to be 
quite successful in practical software reliability engineering [4]. 
The main issue in the NHPP model is to determine an 
appropriate mean value function to denote the expected number 
of failures experienced up to a certain time point. Model 
parameters can be estimated by using Maximum Likelihood 
Estimate (MLE). Various NHPP SRGMs have been built upon 
various assumptions. Many of the SRGMs assume that each 
time a failure occurs, the fault that caused it can be 
immediately removed and no new faults are introduced. which 
is usually called perfect debugging. Imperfect debugging 
models have proposed a relaxation of the above assumption 
[6]. 

Let ( ){ }, 0N t t ≥  be the cumulative number of software 
failures by time ‘t’. m(t) is the mean value function, 
representing the expected number of software failures by time 
‘t’. ( )tλ  is the failure intensity function, which is proportional 

to the residual fault content. Thus  and 

. where ‘a’ denotes the initial number of 
faults contained in a program and ‘b’ represents the fault 
detection rate. In software reliability, the initial number of 
faults and the fault detection rate are always unknown. The 
maximum likelihood technique can be used to evaluate the 
unknown parameters. In NHPP SRGM 

( ) (1 )btm t a e−= −

( ) ( (t b a m tλ = − ))

( )tλ can be expressed 

in a more general way as ( ) ( ) ( ) ( )t b t a t m tλ = −⎡ ⎤⎣ ⎦ . where 

 is the time-dependent fault content function which 
includes the initial and introduced faults in the program and 

 is the time-dependent fault detection rate. 

( )a t

( )b t

A constant ( )a t  implies the perfect debugging assumption, 
i.e no new faults are introduced during the debugging process. 
A constant ( )b t  implies the imperfect debugging  assumption, 
i.e when the faults are removed, then there is a possibility to 
introduce new faults. The present paper deals with Weibull 
model applied on On-line Data Entry Software Package Test 
Data [5] which is of Interval domain data (i.e grouped). 

C. Weibull distribution. 
The probability density function of a two-parameter 

Weibull distribution has the form: ( ) ( )1( ) btf t b bt e
βββ − −= , 

where b > 0 is a scale parameter and 0β >  is a shape 
parameter. The corresponding cumulative distribution function 
is: ( ) ( )1 btF t e

β−= − . The mean value function 
( )( ) 1 btm t a e

β−⎡ ⎤= −⎢ ⎥⎣ ⎦
. The failure intensity function is given as: 

1 ( )( ) . btt ab t e
ββ βλ β − −= .  

D. ML (Maximum Likelihood) Parameter Estimation. 
Parameter estimation is of primary importance in software 

reliability prediction. Once the analytical solution for ( )m t  is 
known for a given model, parameter estimation is achieved by 
applying a technique of Maximum Likelihood Estimate (MLE). 
Depending on the format in which test data are available, two 
different approaches are frequently used. A set of failure data is 
usually collected in one of two common ways, time domain 
data and interval domain data. 

The idea behind maximum likelihood parameter estimation 
is to determine the parameters that maximize the probability 
(likelihood) of the sample data. The method of maximum 
likelihood is considered to be more robust (with some 
exceptions) and yields estimators with good statistical 
properties. In other words, MLE methods are versatile and 
apply to many models and to different types of data. Although 
the methodology for maximum likelihood estimation is simple, 
the implementation is mathematically intense. Using today's 
computer power, however, mathematical complexity is not a 
big obstacle.  Assuming that the data are given for the 
cumulative number of detected errors yi in a given time-
interval (0,ti) where i = 1,2, …, n. and 0 < t1 < t2 <…< tn then 
the log likelihood function (LLF) takes on the following form. 
Likely hood function by using λ(t) is:      

1

( )
n

i
i

L tλ
=

= ∏  

The logarithmic likelihood function for interval domain 
data [7, 8] is given by:                                

( ) ( )1 1
1

.log ( ) ( )
n

i i i i n
i

LogL y y m t m t m t− −
=

= − − −⎡ ⎤⎣ ⎦∑                   

The maximum likelihood estimators (MLE) of 1 2, , , kθ θ θK are 

obtained by maximizing L or Λ , where Λ is ln L . By 
maximizing , which is much easier to work with than L, the 
maximum likelihood estimators (MLE) of 1 2, , , kθ θ K θ are the 
simultaneous solutions of k equations such that:   
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( )
0

jθ
∂ Λ

=
∂

,  j=1,2,…,k    

The parameters ‘a’ and ‘b’ are estimated using iterative 

Newton Raphson Method, which is given as 1
( )
'( )

n
n n

n

f x
x x

f x+ = −  

III. ILLUSTRATING THE MLE METHOD. 

A. parameter estimation 
To estimate ‘a’ and ‘b’ , for a sample of n units, first obtain 

the likelihood function: assuming 2β = .   

     

2( )2

1

2 i

N
bt

i
i

L ab t e−

=

=∏

Take the natural logarithm on both sides, The Log 
Likelihood function is given as:    

( ) ( )1 1
1

.log ( ) ( )
n

i i i i n
i

LogL y y m t m t m t− −
=

= − − −⎡ ⎤⎣ ⎦∑  

( ) ( ) ( )( ) ( )( )2 2
1

1
1

log log 1i i
n

bt bt bt
i i

i

y y a e e a e−− − −
−

=

⎡ ⎤= − + − − −⎢ ⎥⎣ ⎦∑
2

n                        

The parameter ‘a’ is estimated by taking the partial derivative 

w.r.t ‘a’ and equating to ‘0’. (i.e log 0L
a

∂
=

∂
)   

 
( )2

0

1 n

n

bt

y y
a

e−

−
=
⎡ ⎤−⎢⎣ ⎥⎦         

The parameter ‘b’ is estimated by iterative Newton 

Raphson Method using 1
( )
'( )

n
n n

n

g b
b b

g b+ = − . which is substituted 

in finding ‘a’. where ( ) ( )& 'g b g b  are expressed as 

follows. log( ) 0Lg b
b

∂
= =

∂
; 

2

2

log'( ) 0Lg b
b

∂
=

∂
=  . 

 

( )
( ) ( )

( ) ( )

( ) ( )

( )( )
22 2

1

2 2 2
1

22 2
01

1
1

( )
1

ni i

i i n

btbt btn
n ni i

i i bt bt bti

y y t et e t e
g b y y

e e e

−

−

−− −
−

− − − −=

⎡ ⎤ −−
⎢ ⎥= − −
⎢ ⎥− −⎣ ⎦

∑  

       

( ) ( )( )
( )( )

( )
( ) ( ) ( )

( ) ( )( )

2 2 2
1

2 2
1

24 2 2
0 1

12 2
1

2 2
'( )

1

n i i

n i

bt bt btnn n i i
i i

bt bt bti

y y bt e be e t t
g b y y

e e

−

−

− − −
−

−
− −=

⎡− −⎢ ⎥
= − − ⎢ ⎥

⎢ ⎥− −
⎣ ⎦

∑ 2
ie−

⎤

 

 
Assuming 2β = , The MLEs of the parameters for 

weibull  model based on the 21 failure data of On-line Data 
Entry Software Package Test Data, which is of Interval 
domain data are as follows. 

 

   
54.765902
0.062527

a
b
=
=

B. Distribution of failures 
Based on the failure data given in Table 1, we compute the 

software failures process through Mean Value Control chart. 
We used cumulative time failures data for software reliability 
monitoring through SPC using Weibull model.  

TABLE I.  TIME BETWEEN FAILURES OF A SOFTWARE 

Testing time 
(day) Failures 

Testing time 
(day) Failures 

1 2 12 2 
2 1 13 2 
3 1 14 4 
4 1 15 1 
5 2 16 6 
6 2 17 1 
7 2 18 3 
8 1 19 1 
9 7 20 3 
10 3 21 1 
11 1   

 
 ‘ a

∧ ’ and ‘ b
∧ ’ are Maximum Likely hood Estimates (MLEs) 

of parameters and the values can be computed using iterative 
method for the given cumulative time between failures data 
shown in table I. Using ‘a’ and ‘b’ values we can 
compute . Now the control limits are calculated by the 
following equations taking the standard values 0.00135, 
0.99865, and 0.5. 

( )m t

( )1 0.99865bt
UT e

β−= − =   
( )1 0bt

CT e
β−= − = .5  

( )1 0.00135bt
LT e

β−= − =   
These limits are converted to , and ( )Um t ( )Cm t ( )Lm t  

form. They are used to find whether the software process is in 
control or not by placing the points in Mean value chart shown 
in figure 1. A point below the control limit ( )Lm t  indicates an 
alarming signal. A point above the control limit 

indicates better quality. If the points are falling within 
the control limits it indicates the software process is in stable 
[3]. The values of control limits are as follows. 

( )Um t

 

( ) 54.69197Um t =    
( ) 27.38295Cm t =   
( ) 0.073934Lm t =  
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TABLE II.  SUCCESSIVE DIFFERENCES OF CUMULATIVE MEAN VALUES 

TT 
(day) 

 

Cumul
ative 

Failure 
M(t) Succ.diff 

1 2 0.84979464 1.043724338 
2 3 1.89351898 1.427357992 
3 4 3.32087697 1.77870039 
4 5 5.09957736 4.448285044 
5 7 9.54786241 5.317570126 
6 9 14.8654325 5.776397407 
7 11 20.6418299 2.934566781 
8 12 23.5763967 17.83714878 
9 19 41.4135455 5.097440335 

10 22 46.5109858 1.331732272 
11 23 47.8427181 2.166495577 
12 25 50.0092137 1.589163022 
13 27 51.5983767 1.888731288 
14 31 53.487108 0.2791829 
15 32 53.7662909 0.806102204 
16 38 54.5723931 0.050303161 
17 39 54.6226963 0.087824367 
18 42 54.7105206 0.015658581 
19 43 54.7261792 0.025736816 
20 46 54.751916 0.004263309 
21 47 54.7561793   

 

Figure 1 is obtained by placing the number of failures 
cumulative data shown in table 2 on y axis and the day of the 
failures on x axis and the values of control limits are placed on 
Mean Value chart. The Mean Value chart shows that the 16th, 
18th, 19th and 20th day failure data has fallen below ( )Lm t which 
indicates the failure process is identified. It is significantly 
early detection of failures using Mean Value Chart. The 
software quality is determined by detecting failures at an early 
stage. The remaining failure data are shown in Figure 1 are in 
stable condition. No failure data fall outside the . It does 
not indicate any alarm signal.  

( )Um t
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Figure 1.  Mean Value Chart 

IV. CONCLUSION. 
The given 21 day failures are plotted through the estimated 

mean value function against the days of testing. The parameter 
estimation is carried out by Newton Raphson Iterative method. 

The graphs have shown out of control signals i.e below the 
LCL. Hence we conclude that our method of estimation and the 
control chart are giving a +ve recommendation for their use in 
finding out preferable control process or desirable out of 
control signal. By observing the Mean value Control chart we 
identified that the failure situation is detected at 16th, 18th, 19th 
and 20th  point of Table-2 for the corresponding , which is 
below 

( )m t
( )Lm t . Hence our proposed Mean Value Chart detects 

out of control situation. The early detection of software failure 
will improve the software Reliability. 
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