
IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS),
Vol. 1, No. 2, December 2011

Interval Domain based Software Process Control
using Weibull Mean Value Function

G.Krishna Mohan
Dept. of Computer Science, P.B.Siddhartha college,

 Vijayawada, India.

Dr. R.Satya Prasad
Dept. of Computer Science & Engg., Acharya Nagrjuna

University, Nagarjuna Nagar, India.

Abstract—Software reliability process can be monitored
efficiently using Statistical Process Control (SPC). It assists the
software development team to identify and actions to be taken
during software failure process and hence, assures better
software reliability. In this paper we propose a control
mechanism based on the cumulative observations of interval
domain failure data using mean value function (average number
of failures) of Weibull model, which is based on Non-
Homogenous Poisson Process (NHPP). The maximum likelihood
estimation approach is used to estimate the unknown parameters
of the model.

Keywords-Statistical Process Control, Software reliability,
Weibull model, Interval domain data, Mean Value Function,
Control Charts, NHPP.

I. INTRODUCTION.
Software reliability assessment is important to evaluate and

predict the reliability and performance of software system,
since it is the main attribute of software. To identify and
eliminate human errors in software development process and
also to improve software reliability, the Statistical Process
Control concepts and methods are the best choice. SPC
concepts and methods are used to monitor the performance of a
software process over time in order to verify that the process
remains in the state of statistical control. It helps in finding
assignable causes, long term improvements in the software
process. Software quality and reliability can be achieved by
eliminating the causes or improving the software process or its
operating procedures [1].

The most popular technique for maintaining process control
is control charting. The control chart is one of the seven tools
for quality control. Software process control is used to secure
the quality of the final product which will conform to
predefined standards. In any process, regardless of how
carefully it is maintained, a certain amount of natural
variability will always exist. A process is said to be statistically
“in-control” when it operates with only chance causes of
variation. On the other hand, when assignable causes are
present, then we say that the process is statistically “out-of-
control.”

Control charts can be classified into several categories,
according to several distinct criteria. Depending on the number
of quality characteristics under investigation, charts can be

divided into univariate control charts or multivariate control
charts. Furthermore, the quality characteristic of interest may
be a continuous random variable or alternatively a discrete
attribute. Control charts should be capable to create an alarm
when a shift in the level of one or more parameters of the
underlying distribution or a non-random behavior occurs.
Normally, such a situation will be reflected in the control chart
by points plotted outside the control limits or by the presence
of specific patterns. The most common non-random patterns
are cycles, trends, mixtures and stratification [2]. For a process
to be in control the control chart should not have any trend or
nonrandom pattern.

SPC is a powerful tool to optimize the amount of
information needed for use in making management
decisions. Statistical techniques provide an understanding of
the business baselines, insights for process improvements,
communication of value and results of processes, and active
and visible involvement. SPC provides real time analysis to
establish controllable process baselines; learn, set, and
dynamically improve process capabilities; and focus business
areas needing improvement. The early detection of software
failures will improve the software reliability. The selection of
proper SPC charts is essential to effective statistical process
control implementation and use. The SPC chart selection is
based on data, situation and need [3].

The control limits for the chart are defined in such a manner
that the process is considered to be out of control when the time
to observe exactly one failure is less than LCL or greater than
UCL. Our aim is to monitor the failure process and detect any
change of the intensity parameter. When the process is in
control, there is a chance for this to happen and it is commonly
known as false alarm. The traditional false alarm probability is
to set to be 0.27% although any other false alarm probability
can be used. The actual acceptable false alarm probability
should in fact depend on the actual product or process [10].

II. LITERATURE SURVEY.
This section presents the theory that underlies NHPP

models, Weibull model and maximum likelihood estimation for
Interval domain (i.e grouped) complete data. If ‘t’ is a
continuous random variable with pdf: 1 2(; , , ,)kf t θ θ θK . where

1 2, , , kθ θ K θ are k unknown constant parameters which need to

ISSN: 2249-9555 111

mailto:km_mm_2000@yahoo.com

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS),
Vol. 1, No. 2, December 2011

be estimated, and cdf: ()F t . where, The mathematical
relationship between the pdf and cdf is given
by: ()() df t F tdt= . Let ‘a’ denote the expected number of
faults that would be detected given infinite testing time in case
of finite failure NHPP models. Then, the mean value function
of the finite failure NHPP models can be written
as: , where F(t) is a cumulative distribution
function. The failure intensity function

() ()m t aF t=
()tλ in case of the

finite failure NHPP models is given by: () '()t aF tλ = [9].

A. Data Analysis.
There are two common types of failure data: time-domain

and interval-domain. Some software reliability models can
handle both types of data. The time domain approach involves
recording the individual times at which failure occurred. The
interval domain approach is characterized by counting the
number of failures occurring during a fixed period (e.g., test
session, hour, week, day). The collected data are a count of the
number of failures in the interval.

B. NHPP model.
The Non-Homogenous Poisson Process (NHPP) based

software reliability growth models (SRGMs) are proved to be
quite successful in practical software reliability engineering [4].
The main issue in the NHPP model is to determine an
appropriate mean value function to denote the expected number
of failures experienced up to a certain time point. Model
parameters can be estimated by using Maximum Likelihood
Estimate (MLE). Various NHPP SRGMs have been built upon
various assumptions. Many of the SRGMs assume that each
time a failure occurs, the fault that caused it can be
immediately removed and no new faults are introduced. which
is usually called perfect debugging. Imperfect debugging
models have proposed a relaxation of the above assumption
[6].

Let (){ }, 0N t t ≥ be the cumulative number of software
failures by time ‘t’. m(t) is the mean value function,
representing the expected number of software failures by time
‘t’. ()tλ is the failure intensity function, which is proportional

to the residual fault content. Thus and

. where ‘a’ denotes the initial number of
faults contained in a program and ‘b’ represents the fault
detection rate. In software reliability, the initial number of
faults and the fault detection rate are always unknown. The
maximum likelihood technique can be used to evaluate the
unknown parameters. In NHPP SRGM

() (1)btm t a e−= −

() ((t b a m tλ = −))

()tλ can be expressed

in a more general way as () () () ()t b t a t m tλ = −⎡ ⎤⎣ ⎦ . where

 is the time-dependent fault content function which
includes the initial and introduced faults in the program and

 is the time-dependent fault detection rate.

()a t

()b t

A constant ()a t implies the perfect debugging assumption,
i.e no new faults are introduced during the debugging process.
A constant ()b t implies the imperfect debugging assumption,
i.e when the faults are removed, then there is a possibility to
introduce new faults. The present paper deals with Weibull
model applied on On-line Data Entry Software Package Test
Data [5] which is of Interval domain data (i.e grouped).

C. Weibull distribution.
The probability density function of a two-parameter

Weibull distribution has the form: () ()1() btf t b bt e
βββ − −= ,

where b > 0 is a scale parameter and 0β > is a shape
parameter. The corresponding cumulative distribution function
is: () ()1 btF t e

β−= − . The mean value function
()() 1 btm t a e

β−⎡ ⎤= −⎢ ⎥⎣ ⎦
. The failure intensity function is given as:

1 ()() . btt ab t e
ββ βλ β − −= .

D. ML (Maximum Likelihood) Parameter Estimation.
Parameter estimation is of primary importance in software

reliability prediction. Once the analytical solution for ()m t is
known for a given model, parameter estimation is achieved by
applying a technique of Maximum Likelihood Estimate (MLE).
Depending on the format in which test data are available, two
different approaches are frequently used. A set of failure data is
usually collected in one of two common ways, time domain
data and interval domain data.

The idea behind maximum likelihood parameter estimation
is to determine the parameters that maximize the probability
(likelihood) of the sample data. The method of maximum
likelihood is considered to be more robust (with some
exceptions) and yields estimators with good statistical
properties. In other words, MLE methods are versatile and
apply to many models and to different types of data. Although
the methodology for maximum likelihood estimation is simple,
the implementation is mathematically intense. Using today's
computer power, however, mathematical complexity is not a
big obstacle. Assuming that the data are given for the
cumulative number of detected errors yi in a given time-
interval (0,ti) where i = 1,2, …, n. and 0 < t1 < t2 <…< tn then
the log likelihood function (LLF) takes on the following form.
Likely hood function by using λ(t) is:

1

()
n

i
i

L tλ
=

= ∏

The logarithmic likelihood function for interval domain
data [7, 8] is given by:

() ()1 1
1

.log () ()
n

i i i i n
i

LogL y y m t m t m t− −
=

= − − −⎡ ⎤⎣ ⎦∑

The maximum likelihood estimators (MLE) of 1 2, , , kθ θ θK are

obtained by maximizing L or Λ , where Λ is ln L . By
maximizing , which is much easier to work with than L, the
maximum likelihood estimators (MLE) of 1 2, , , kθ θ K θ are the
simultaneous solutions of k equations such that:

ISSN: 2249-9555 112

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS),
Vol. 1, No. 2, December 2011

()
0

jθ
∂ Λ

=
∂

, j=1,2,…,k

The parameters ‘a’ and ‘b’ are estimated using iterative

Newton Raphson Method, which is given as 1
()
'()

n
n n

n

f x
x x

f x+ = −

III. ILLUSTRATING THE MLE METHOD.

A. parameter estimation
To estimate ‘a’ and ‘b’ , for a sample of n units, first obtain

the likelihood function: assuming 2β = .

2()2

1

2 i

N
bt

i
i

L ab t e−

=

=∏

Take the natural logarithm on both sides, The Log
Likelihood function is given as:

() ()1 1
1

.log () ()
n

i i i i n
i

LogL y y m t m t m t− −
=

= − − −⎡ ⎤⎣ ⎦∑

() () ()() ()()2 2
1

1
1

log log 1i i
n

bt bt bt
i i

i

y y a e e a e−− − −
−

=

⎡ ⎤= − + − − −⎢ ⎥⎣ ⎦∑
2

n

The parameter ‘a’ is estimated by taking the partial derivative

w.r.t ‘a’ and equating to ‘0’. (i.e log 0L
a

∂
=

∂
)

()2

0

1 n

n

bt

y y
a

e−

−
=
⎡ ⎤−⎢⎣ ⎥⎦

The parameter ‘b’ is estimated by iterative Newton

Raphson Method using 1
()
'()

n
n n

n

g b
b b

g b+ = − . which is substituted

in finding ‘a’. where () ()& 'g b g b are expressed as

follows. log() 0Lg b
b

∂
= =

∂
;

2

2

log'() 0Lg b
b

∂
=

∂
= .

()
() ()

() ()

() ()

()()
22 2

1

2 2 2
1

22 2
01

1
1

()
1

ni i

i i n

btbt btn
n ni i

i i bt bt bti

y y t et e t e
g b y y

e e e

−

−

−− −
−

− − − −=

⎡ ⎤ −−
⎢ ⎥= − −
⎢ ⎥− −⎣ ⎦

∑

() ()()
()()

()
() () ()

() ()()

2 2 2
1

2 2
1

24 2 2
0 1

12 2
1

2 2
'()

1

n i i

n i

bt bt btnn n i i
i i

bt bt bti

y y bt e be e t t
g b y y

e e

−

−

− − −
−

−
− −=

⎡− −⎢ ⎥
= − − ⎢ ⎥

⎢ ⎥− −
⎣ ⎦

∑ 2
ie−

⎤

Assuming 2β = , The MLEs of the parameters for

weibull model based on the 21 failure data of On-line Data
Entry Software Package Test Data, which is of Interval
domain data are as follows.

54.765902
0.062527

a
b
=
=

B. Distribution of failures
Based on the failure data given in Table 1, we compute the

software failures process through Mean Value Control chart.
We used cumulative time failures data for software reliability
monitoring through SPC using Weibull model.

TABLE I. TIME BETWEEN FAILURES OF A SOFTWARE

Testing time
(day) Failures

Testing time
(day) Failures

1 2 12 2
2 1 13 2
3 1 14 4
4 1 15 1
5 2 16 6
6 2 17 1
7 2 18 3
8 1 19 1
9 7 20 3
10 3 21 1
11 1

 ‘ a

∧ ’ and ‘ b
∧ ’ are Maximum Likely hood Estimates (MLEs)

of parameters and the values can be computed using iterative
method for the given cumulative time between failures data
shown in table I. Using ‘a’ and ‘b’ values we can
compute . Now the control limits are calculated by the
following equations taking the standard values 0.00135,
0.99865, and 0.5.

()m t

()1 0.99865bt
UT e

β−= − =
()1 0bt

CT e
β−= − = .5

()1 0.00135bt
LT e

β−= − =
These limits are converted to , and ()Um t ()Cm t ()Lm t

form. They are used to find whether the software process is in
control or not by placing the points in Mean value chart shown
in figure 1. A point below the control limit ()Lm t indicates an
alarming signal. A point above the control limit

indicates better quality. If the points are falling within
the control limits it indicates the software process is in stable
[3]. The values of control limits are as follows.

()Um t

() 54.69197Um t =
() 27.38295Cm t =
() 0.073934Lm t =

ISSN: 2249-9555 113

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS),
Vol. 1, No. 2, December 2011

TABLE II. SUCCESSIVE DIFFERENCES OF CUMULATIVE MEAN VALUES

TT
(day)

Cumul
ative

Failure
M(t) Succ.diff

1 2 0.84979464 1.043724338
2 3 1.89351898 1.427357992
3 4 3.32087697 1.77870039
4 5 5.09957736 4.448285044
5 7 9.54786241 5.317570126
6 9 14.8654325 5.776397407
7 11 20.6418299 2.934566781
8 12 23.5763967 17.83714878
9 19 41.4135455 5.097440335

10 22 46.5109858 1.331732272
11 23 47.8427181 2.166495577
12 25 50.0092137 1.589163022
13 27 51.5983767 1.888731288
14 31 53.487108 0.2791829
15 32 53.7662909 0.806102204
16 38 54.5723931 0.050303161
17 39 54.6226963 0.087824367
18 42 54.7105206 0.015658581
19 43 54.7261792 0.025736816
20 46 54.751916 0.004263309
21 47 54.7561793

Figure 1 is obtained by placing the number of failures
cumulative data shown in table 2 on y axis and the day of the
failures on x axis and the values of control limits are placed on
Mean Value chart. The Mean Value chart shows that the 16th,
18th, 19th and 20th day failure data has fallen below ()Lm t which
indicates the failure process is identified. It is significantly
early detection of failures using Mean Value Chart. The
software quality is determined by detecting failures at an early
stage. The remaining failure data are shown in Figure 1 are in
stable condition. No failure data fall outside the . It does
not indicate any alarm signal.

()Um t

UCL 54.691968032
CL 27.382951012

LCL 0.073933964

0.002000000

0.008000000

0.032000000

0.128000000

0.512000000

2.048000000

8.192000000

32.768000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

su
cc
es
si
ve

 d
if
fe
re
n
ce
s

Day

Weibull‐Mean Value Chart

Figure 1. Mean Value Chart

IV. CONCLUSION.
The given 21 day failures are plotted through the estimated

mean value function against the days of testing. The parameter
estimation is carried out by Newton Raphson Iterative method.

The graphs have shown out of control signals i.e below the
LCL. Hence we conclude that our method of estimation and the
control chart are giving a +ve recommendation for their use in
finding out preferable control process or desirable out of
control signal. By observing the Mean value Control chart we
identified that the failure situation is detected at 16th, 18th, 19th
and 20th point of Table-2 for the corresponding , which is
below

()m t
()Lm t . Hence our proposed Mean Value Chart detects

out of control situation. The early detection of software failure
will improve the software Reliability.

REFERENCES
[1] Kimura, M., Yamada, S., Osaki, S., 1995. ”Statistical Software

reliability prediction and its applicability based on mean time between
failures”. Mathematical and Computer Modelling
Volume 22, Issues 10-12, Pages 149-155.

[2] Koutras, M.V., Bersimis, S., Maravelakis,P.E., 2007. “Statistical process
control using shewart control charts with supplementary Runs rules”
Springer Science + Business media 9:207-224.

[3] MacGregor, J.F., Kourti, T., 1995. “Statistical process control of
multivariate processes”. Control Engineering Practice Volume 3, Issue
3, March 1995, Pages 403-414 .

[4] Musa, J.D., Iannino, A., Okumoto, k., 1987. “Software Reliability:
Measurement Prediction Application”. McGraw-Hill, New York.

[5] Ohba, M., 1984. “Software reliability analysis model”. IBM J. Res.
Develop. 28, 428-443.

[6] Pham. H., 1993. “Software reliability assessment: Imperfect debugging
and multiple failure types in software development”. EG&G-RAAM-
10737; Idaho National Engineering Laboratory.

[7] Pham. H., 2003. “Handbook Of Reliability Engineering”, Springer.
[8] Pham. H., 2006. “System software reliability”, Springer.
[9] Swapna S. Gokhale and Kishore S.Trivedi, 1998. “Log-Logistic

Software Reliability Growth Model”. The 3rd IEEE International
Symposium on High-Assurance Systems Engineering. IEEE Computer
Society.

[10] Xie. M., Goh. T.N., Ranjan. P., “Some effective control chart procedures
for reliability monitoring”, Reliability engineering and system safety. 77,
2002. 143-150.

AUTHORS PROFILE

First Author

Mr. G. Krishna Mohan is working as a Reader in the
Department of Computer Science, P.B.Siddhartha College,
Vijayawada. He obtained his M.C.A degree from Acharya
Nagarjuna University in 2000, M.Tech from JNTU,
Kakinada, M.Phil from Madurai Kamaraj University and
pursuing Ph.D at Acharya Nagarjuna University. His
research interests lies in Data Mining and Software

Engineering.

Second Author
Dr. R. Satya Prasad received Ph.D. degree in Computer
Science in the faculty of Engineering in 2007 from
Acharya Nagarjuna University, Andhra Pradesh. He
received gold medal from Acharya Nagarjuna University
for his out standing performance in Masters Degree. He is
currently working as Associate Professor and H.O.D, in
the department of Computer Science & Engineering,
Acharya Nagarjuna University. His current research is

focused on Software Engineering. He has published several papers in National
& International Journals.

ISSN: 2249-9555 114

	Introduction.
	Literature Survey.
	Data Analysis.
	NHPP model.
	Weibull distribution.
	ML (Maximum Likelihood) Parameter Estimation.

	Illustrating the MLE Method.
	parameter estimation
	Distribution of failures

	Conclusion.
	References

